University of California, Berkeley
 Department of Mechanical Engineering
 ME 104, Spring 2021

Midterm Exam 1 (15 April 2021)
SOLUTIONS
Problem 125 points
(a) (5 pts)

- Frenet-Serret basis and free-body diagram of the slider at B

- Applying Frenet-Serret basis, reaction force (\boldsymbol{R}) supplied by the rod can be written as

$$
\boldsymbol{R}=R_{t} \boldsymbol{e}_{t}+R_{n} \boldsymbol{e}_{n}+R_{b} \boldsymbol{e}_{b},
$$

where $\boldsymbol{W}=m g\left(-\boldsymbol{e}_{\boldsymbol{b}}\right)$ is the weight of the slider.
(b) (4 pts)

The basis for the straight-line portion is given in the figure above. Note that \boldsymbol{e}_{n} is defined such that the basis joints continuously with the Frenet-Serret basis for the semi-circular portion.
(c) (16 pts)

- Passing point A :

Applying Newton's second law

$$
\begin{gathered}
\boldsymbol{F}=m \boldsymbol{a} \\
\Rightarrow \quad R_{t} \boldsymbol{e}_{t}+R_{n} \boldsymbol{e}_{n}+R_{b} \boldsymbol{e}_{b}-m g \boldsymbol{e}_{b}=m\left(\dot{v} \boldsymbol{e}_{t}+\kappa^{\boldsymbol{\prime}} v^{2} \boldsymbol{e}_{n}\right)=m \dot{v} \boldsymbol{e}_{t} .
\end{gathered}
$$

Taking dot products,

$$
\begin{gathered}
(\boldsymbol{F}=m \boldsymbol{a}) \cdot \boldsymbol{e}_{t} \Rightarrow R_{t}=m \dot{v}=0 \\
(\boldsymbol{F}=m \boldsymbol{a}) \cdot \boldsymbol{e}_{n} \Rightarrow R_{n}=0 \\
(\boldsymbol{F}=m \boldsymbol{a}) \cdot \boldsymbol{e}_{b} \Rightarrow R_{b}=m g \\
\therefore\|\boldsymbol{R}\|=m g \quad \mathrm{~N}
\end{gathered}
$$

- Passing point B :

Applying Newton's second law

$$
\begin{gathered}
\boldsymbol{F}=m \boldsymbol{a} \\
\Rightarrow \quad R_{t} \boldsymbol{e}_{t}+R_{n} \boldsymbol{e}_{n}+R_{b} \boldsymbol{e}_{b}-m g \boldsymbol{e}_{b}=m\left(\dot{v} \boldsymbol{e}_{t}+\kappa v^{2} \boldsymbol{e}_{n}\right),
\end{gathered}
$$

where $\kappa=\frac{1}{r}$. Taking dot products,

$$
\begin{aligned}
& (\boldsymbol{F}=m \boldsymbol{a}) \cdot \boldsymbol{e}_{t} \Rightarrow R_{t}=m \dot{v}=0 \\
& (\boldsymbol{F}=m \boldsymbol{a}) \cdot \boldsymbol{e}_{n} \Rightarrow R_{n}=\frac{v^{2}}{r} \\
& (\boldsymbol{F}=m \boldsymbol{a}) \cdot \boldsymbol{e}_{b} \Rightarrow R_{b}=m g \\
& \therefore\|\boldsymbol{R}\|=\sqrt{\left(\frac{v^{2}}{r}\right)^{2}+(m g)^{2}} \mathrm{~N}
\end{aligned}
$$

(d)

The existence of jump discontinuity in the normal force at point A can be problematic, which causes unnecessary impact to both track and train.

Problem 225 points

(a) (4 pts)

The work done by the reaction force is,

$$
W_{12}=\int_{t_{1}}^{t_{2}} \boldsymbol{R} \cdot \boldsymbol{v} d t=\int_{t_{1}}^{t_{2}} R v \boldsymbol{e}_{n} \cdot \boldsymbol{e}_{t} d t=\int_{t_{1}}^{t_{2}} 0 d t=0
$$

Therefore, the reaction force is workless and the energy is conserved.
(b) (7 pts)

From the conservation of total mechanical energy,

$$
\begin{aligned}
& T_{A}+V_{A}=T_{B}+V_{B} \\
& \Rightarrow 0+m g\left(h_{1}+h_{2}\right)=\frac{1}{2} m v_{B}^{2}+0 \\
& \Rightarrow v_{B}=\sqrt{2 g\left(h_{1}+h_{2}\right)} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

(c) (8 pts)

From the similar procedure of (b),

$$
\begin{aligned}
& T_{A}+V_{A}=T_{F}+V_{F} \\
& \Rightarrow 0+m g\left(h_{1}+h_{2}\right)=0+m g h_{2}+\frac{1}{2} k \delta_{\max }^{2} \\
& \Rightarrow \delta_{\max }=\sqrt{\frac{2 m g h_{1}}{k}} \mathrm{~m}
\end{aligned}
$$

(d) (6 pts)

Since the spring deforms without hitting the wall, the motions between the point A and the point F would continue periodically.

Problem 320 points

(a) (10pts)

From the conservation of angular momentum,

$$
\begin{aligned}
\frac{\boldsymbol{H}^{O}}{m} & =\boldsymbol{r}_{P} \times \boldsymbol{v}_{P}=\boldsymbol{r}_{A} \times \boldsymbol{v}_{A} \\
& \Rightarrow\left(R_{E}+L_{A}\right) \boldsymbol{i} \times v_{A} \boldsymbol{j}=\left(R_{E}+L_{B}\right)(-\boldsymbol{i}) \times v_{P}(-\boldsymbol{j}) \\
& \Rightarrow\left(R_{E}+L_{A}\right) v_{A} \boldsymbol{k}=\left(R_{E}+L_{B}\right) v_{P} \boldsymbol{k} \\
\therefore \frac{\boldsymbol{H}^{O}}{m} \cdot \boldsymbol{k} & \Rightarrow v_{P}=\frac{\left(R_{E}+L_{A}\right) v_{A}}{R_{E}+L_{B}} \quad \mathrm{ft} / \mathrm{s} \text { or } \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

(b) (10pts)

Since the mechanical energy per unit mass is expected to be conserved, we expect to observe

$$
\frac{E_{P}}{m}=\frac{1}{2} v_{P}^{2}-\frac{G m_{e}}{r_{P}}=\frac{E_{A}}{m}=\frac{1}{2} v_{A}^{2}-\frac{G m_{e}}{r_{A}} \quad \frac{\mathrm{lbf} \cdot \mathrm{ft}}{\mathrm{slug}} \text { or } \mathrm{ft}^{2} / \mathrm{s}^{2}
$$

