If you encounter any technical problems during the entire exam period, Zoom Danny Huang at https://berkeley.zoom.us///8716114511
Label the final pdf file with your name and the words "3AExam2" (namely: Last Name, First Name, 3AExam2) and upload it to Gradescope.

To complete this page in AcrobatPro, click on "Comments" and use the "Text" function.

EXAMINATION 2

Chemistry 3A

Name:
Print first name before second! Use capital letters!

SID \#:
Make sure the number is correct!

GSI (if you are taking Chem 3AL): \qquad
Peter Vollhardt
April 10, 2021

Please provide the following information if applicable.

Making up an I Grade
If you are, please indicate the semester during which you took previous Chem 3A and the instructor:

Auditor

\qquad

This test should have 14 numbered pages. A good piece of advice: Read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy entries. Good Luck!

To answer the questions in AcrobatPro, click on "Comments" and use the "Add Text" or "Draw" functions, as applicable. For the latter, you will only need the "Line", "Rectangle", and "Oval" options.

Please write the answer you wish to be graded in the boxed spaces provided.
I. [30 Points] Name (complete the drawing, or choose one given answer, as appropriate) the following molecules according to the IUPAC rules.
a.

b.

3,3-Bis[(methylthio)methyl]cyclobutane-1-thiol

c.

d.
(R)-1,1-Dichloro-3-methoxycyclohexane

e.

II. [80 Points] Add or identify the missing starting materials, reagents, or products (aqueous work-up is assumed where necessary). Caution: Do not forget to consider stereochemistry!
a.

$\xrightarrow{\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \text { pyridine }}$

"Rectangle" your answer
b.

This enantiomer

"Rectangle" your answer
c.

This enantiomer

Place the missing substituents at the end of the dashed/wedged dangling bonds
"Oval" your choice of an answer: Is the product optically active? Yes No
d.

Type your answers in the respective boxes using the "Text" tool. Ignore super- and subscripts if applicable [as in, for example, tert-butyl cation $=(\mathrm{CH} 3) 3 \mathrm{C}+$]
e.

Complete the structure by adding bonds ("Line" tool) and atoms ("Text" tool) as appropriate
f.

Type your answers in the respective boxes using the "Text" tool. Ignore super- and subscripts [as in, for example, tert-butyl cation $=(\mathrm{CH} 3) 3 \mathrm{C}+\mathrm{]}$.
g.

"Oval" your choice of an answer:

Is the product chiral?
Is the product optically active?

> Yes No

Yes No
h.

\qquad

Complete the structure by adding missing substituents
"Oval" your choice of an answer:

Is the product chiral?

Is the product optically active?

Yes No
Yes No
III. [40 Points] For each pair of reactions shown below, mark the box on the right with an "X" indicating which will go faster and "rectangle" the mechanism by which it proceeds (e.g. $S_{N} 2, S_{N} 1, E 2, E 1$). In one sentence, provide a brief explanation for the rate acceleration in each case in the bottom box provided.
a.
1.

2. Mechanism:

SN2
$\mathrm{S}_{\mathrm{N}} 1$
E2
E1
3. Explain your choice of the faster reaction in one sentence.
b.
1.

2. Mechanism:

SN2
$\mathrm{S}_{\mathrm{N}} 1$
E2
E1
3. Explain your choice of the faster reaction in one sentence.
\square
C.
1.

$\xrightarrow{\begin{array}{l}\mathrm{Na}^{+-} \mathrm{OCH}_{3}, \\ \mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{3}\end{array}}$

2. Mechanism: $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{S}_{\mathrm{N}} 1$
E2
E1
3. Explain your choice of the faster reaction in one sentence.

d.

1. Hint: Draw the most stable chair conformations for the respective starting bromides.

2. Mechanism:

Sn2
$\mathrm{S}_{\mathrm{N}} 1$
E2
E1
3. Explain your choice of the faster reaction in one sentence.
\square

IV. [20 Points]

a. Place an \boldsymbol{X} mark ("Text" tool) in the box preceding a true statement. There will be several such statements. Leave blank those that you deem untrue. Note: An incorrect X mark will count against your total score, but the minimum is zero (i.e., no negative points).

\square
Along the radical series-primary to secondary to tertiary-hyperconjugation decreases.

Hybridization of an atom is advantageous when it increases overlap to attached other atoms and minimizes electron repulsion.

The number of stereoisomers in a compound with two stereocenters is always four.
\square Leaving group ability increases along the series
 because the oxygen accommodates the negative charge increasingly better.
\square The rate of the reaction $A+B \rightarrow C+D$ is always proportional to the concentrations of both A and B.

In R/S nomenclature, the 1-methylethyl substituent has higher priority than ethyl.
\square Nucleophilicity of charged nucleophiles in protic solvents increases down the periodic table.
\square The chair conformation of cyclohexane is more stable than the boat form, because it minimizes eclipsing and transannular strain.

The $S_{N} 1$ reaction is generally faster than the $S_{N} 2$ reaction.
\square The conversion of alcohols to chloroalkanes using PCl_{3} requires only catalytic amounts of PCl_{3}.

The following four problems should be answered on four separate pages of hard copy white paper using a dark (at least \#2) pencil. Label these pages "V.a", "V.b", "VI.a", and "VI.b". Ascertain that your drawings are clearly visible. When you are finished, scan the four pages on your device with a suitable scanning app (do not use CamScanner) in the order V.a \rightarrow VI.b, save the document as a pdf file, and add its contents to this file, using the "Combine Files" feature on AcrobatPro. Make sure to set up the correct order of the two; the combined file should feature your scanned pages at the end.
Label the final combined pdf file with your name and the words "Exam 2" (namely: Last Name, First Name, Exam 2) and upload it to Gradescope.
V. [40] Points]

For each of the following reactions, provide a detailed mechanism (i.e., write a scheme with structures, arrow pushing, etc.) Do not add any reagents! These are not synthesis problems!
a.

This enantiomer
Racemate
b.

This enantiomer
This enantiomer
(after aqueous work-up)
VI. [40 Points]
a. Devise the synthesis of compound \mathbf{A} below, starting from cyclohexane and using additional building blocks containing four carbons or less as the only carbon sources. It will help you if you execute a retrosynthesis on a separate page (not to be submitted).

A
(mixture of diastereomers)
b. Provide a viable conversion of the starting material below to the product. You may use any additional compounds and reagents. It will help you if you execute a retrosynthesis on a separate page (not to be submitted).

J The End J

