Problem 1:
d) Let's first see what the field looks like at an arbiter. point \vec{r} within a sphere of charge density ρ :

we want $\vec{E}(\vec{r})$

$$
\Rightarrow \quad \begin{aligned}
\Rightarrow \text { coss }|E(\vec{r})| 4 \pi|\vec{r}|^{2}=\frac{4}{3 \varepsilon_{0}} \pi|\vec{r}|^{3} \rho \\
\Rightarrow \vec{E}(\vec{r})=\frac{\vec{r} \rho}{3 \varepsilon_{0}}
\end{aligned}
$$

The setup in the problem con be recreated using a full sphere of radius R_{1} with ρ and a small sphere of radius R_{2} with $-\rho$

located
at \vec{a} (direction doesn't actually at 0

."r .-Gold within the cavity is constant Midterm Solutions Page 1
i.e. the E-field within the cavity is constant and pointing in the direction connecting the big ball's and the cavity's centers.
b) potentials con also be added Set $\phi=0$ at ∞.
Let's first ignore the specific setup and get a general formula for the potential at an arbitrary point r inside a charged spore:

$$
\begin{aligned}
\phi=\int_{\infty}^{r}-E d r=\int_{\infty}^{R}-\|_{\text {out }} d r+\int_{R}^{r}-E_{i r} d r & =-\frac{\rho}{3 \varepsilon_{0}}\left[\int_{\infty}^{R} \frac{R^{3}}{r^{2}} d r+\int_{R}^{r} r d r\right] \\
\frac{1}{4 \pi \varepsilon_{0}} \frac{\rho \frac{4}{3} \pi R^{3}}{r^{2}} & \frac{\rho r}{3 \varepsilon_{0}} \\
& =-\frac{\rho}{3 \varepsilon_{0}}\left[-R^{2}+\frac{1}{2}\left(r^{2}-R^{2}\right)\right] \\
& =\frac{\rho}{6 \varepsilon_{0}} \frac{R^{3}}{r^{2}}\left(3 R^{2}-r^{2}\right)=: V(r)
\end{aligned}
$$

now we can add the two potentials
from the big and the small sphere:

$$
\begin{aligned}
& =\frac{\rho}{6 \varepsilon_{0}}\left(3 R_{1}^{2}-a^{2}-3 R_{2}^{2}\right) \\
& =\frac{\rho}{\varepsilon_{0}}\left(\frac{1}{2}\left(R_{1}^{2}-R_{2}^{2}\right)-\frac{a^{2}}{6}\right)=V_{\substack{\text { center } \\
\text { of cavity }}}
\end{aligned}
$$

$$
=\left|\frac{1}{\varepsilon_{0}}\left(\frac{1}{2}\left(R_{1}^{\alpha}-R_{2}^{2}\right)-\frac{n}{6}\right)=V_{\substack{\text { center } \\ \text { of cavity }}}\right|
$$

Problem 2:
a) The metal slab is a conductor
\Rightarrow no field in II
the surface of the metal will arrange such that we have $-Q$ on the left and $+Q$ on the right, effectively giving us 2 capacitors:

$$
\leftrightarrow \overbrace{x} \stackrel{\rightharpoonup}{d-L-x} \text { no field } \quad \Rightarrow
$$

$$
\begin{aligned}
& E=\frac{\Delta \phi}{l}=\frac{Q}{c l}=\frac{Q l}{l A \varepsilon_{0}}=\frac{Q}{A \varepsilon_{0}} \\
\Rightarrow & E_{I}=\frac{Q}{A \varepsilon_{0}}=E_{\text {III }} \\
\Rightarrow & \begin{array}{l}
E_{I}=\frac{Q}{A \varepsilon_{0}} \\
E_{\text {II }} \\
\\
E_{\text {III }}=0 \\
A \varepsilon_{0}
\end{array}
\end{aligned}
$$

now get the potential difference: $\Delta \phi=E x+E(d-L-x)$

$$
\Rightarrow \Delta \phi=\frac{Q}{A \varepsilon_{0}}(d-L)
$$

b) Work $=$ difference in energy between the two set ups

$$
\text { inference in ene }, \cdots-1 Q^{2}=1 \frac{Q^{2} d}{1}
$$

b) Work $=$ difference ri whey
without metal: ${\underset{C}{\text { energy }}}_{U}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} \frac{Q^{2} d}{A \varepsilon_{0}}$ within field of cap.

$$
\begin{aligned}
& =\frac{1}{2} \frac{Q^{2}}{A \varepsilon_{0}}(d-L) \\
\Rightarrow \Delta U & =\frac{1}{2} \frac{Q^{2}}{A \varepsilon_{0}} L
\end{aligned}
$$

Problem 3:
Use Biot-Savart: $\vec{B}(\vec{r})=\int_{\text {wire }} \frac{\mu_{0} I}{4 \pi} \frac{d \vec{l} \times \hat{r}^{\prime}}{r^{\prime 2}}$

value of integrand in these parts of the wire is 0

$$
=\frac{\mu_{0} I}{4 r^{\prime}}=\frac{\mu_{0} 1 \AA^{\prime}}{4 \mathrm{~cm}}=B \quad \begin{aligned}
& =3,14 \times 10^{\wedge}-5 \text { Tesla } \\
& \text { The field points into the page. }
\end{aligned}
$$

Also, if you don't wanna use biot savart you could basically just use the formula of a loop of charge, take half of that and be done. In other words you could have done this in 2 lines.
Problem 4.
a) Let's find the B field of on infinite plane with surface current j

Top view

looking onto plane from

$$
\begin{aligned}
& \oint \vec{B} d \vec{l}=\mu_{0} I_{\operatorname{en} l} l . \\
& 2|B| l=\mu_{0} j l \\
\Rightarrow & |\vec{B}|=\frac{\mu_{0}|\vec{j}|}{2}
\end{aligned}
$$

We can now simply use superposition of the fields (which don't change in strength with distance away from the sheet) coming from the two sheets. On the top and the bottom of the top and the bottom sheet respectively, the fields coming from the two sheets will be equal, but opposite in direction as can be easily seen from the above sketch indicating the direction of the B field. In the middle between the sheets, the fields will point into the same direction and therefore add up, giving us the following expression for the fields:

b) We know that $d F=d l \vec{I} \times \vec{B}$
we have: $\vec{j} \cdot d=I \quad$ (ie. like if you would have many wires in parallel next to each other)
We also know that $d l$ runs over a distance of a We also know that $\vec{B} \perp \vec{I}$

$$
\begin{aligned}
& \text { We also know that } B \perp \perp \\
& \Rightarrow F=a \cdot j d \cdot B=B d^{2} j=\frac{\mu_{0} j^{2} d^{2}}{2} \\
& \text { we only tale }
\end{aligned}
$$

we only take the B field of one of the planes since the plane can't act a force upon itself
using the right hand rule we see that the force points upwards \Rightarrow all together we got $\vec{F}=\frac{\mu_{0} j^{2} d^{2}}{2} \hat{y}$

