MATH 54: MIDTERM 1 SOLUTIONS

23 Feb 2021

3. True or False

Q3. Select "true" (i.e., always true) or "false" (i.e., sometimes false) for each statement.

Q3.1. If the linear system $A \mathbf{x}=\mathbf{0}$ has at least one solution then $A \mathbf{x}=\mathbf{b}$ must have at least one solution.
A3.1. False. The homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least the trivial solution $(\mathbf{x}=\mathbf{0})$ but of course we can find a matrix A and vector \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ is inconsistent. For example, set

$$
A=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Q3.2. If the linear system $A \mathbf{x}=\mathbf{0}$ has at most one solution then $A \mathbf{x}=\mathbf{b}$ has at most one solution.
A3.2. True. Suppose \mathbf{v}, \mathbf{w} are two distinct solutions to $A \mathbf{x}=\mathbf{b}$. Then $A(\mathbf{v}-\mathbf{w})=A \mathbf{v}-A \mathbf{w}=\mathbf{b}-\mathbf{b}=\mathbf{0}$ and so $\mathbf{v}-\mathbf{w} \neq \mathbf{0}$ is a nontrivial solution to $A \mathbf{x}=\mathbf{0}$. Thus, along with the trivial solution, $A \mathbf{x}=\mathbf{0}$ has two distinct solutions.

Q3.3. If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{3}$ are vectors such that $\{\mathbf{x}, \mathbf{y}\}$ are linearly independent and $\{\mathbf{y}, \mathbf{z}\}$ are linearly independent then $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ must be linearly independent.
A3.3. False. Consider the vectors

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{z}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Any set containing two of these vectors is linearly independent (because no two are parallel), but the three vectors are linearly dependent because $\mathbf{x}+\mathbf{y}=\mathbf{z}$.

Q3.4. If $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{3}$ are linearly independent vectors and $\mathbf{v}_{3} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ must be linearly independent.
A3.4. True. Suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent and $\mathbf{v}_{3} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, but for contradiction that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly dependent. Then there are a_{1}, a_{2}, a_{3} not all zero so that $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{0}$. We must have $a_{3}=0$, since otherwise $\mathbf{v}_{3}=-\left(a_{1} / a_{3}\right) \mathbf{v}_{1}-\left(a_{2} / a_{3}\right) \mathbf{v}_{2} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. But now $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}=\mathbf{0}$, a nontrivial linear dependence among $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. This contradicts the assumption that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent. We conclude that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly independent.

An alternate argument is simply to apply Theorem 7 in the book: if the vectors were linearly dependent then either $v_{2} \in \operatorname{span}\left\{v_{1}\right\}$ or $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$, both of which are ruled out by the hypothesis.

Q3.5. If R is the reduced row echelon form of an $m \times n$ matrix A and $A \mathbf{x}=\mathbf{b}$ is consistent for some vector $\mathbf{b} \in \mathbb{R}^{m}$, then $R \mathbf{x}=\mathbf{b}$ must be consistent.
A3.5. False. When we row-reduce the augmented matrix $[A: \mathbf{b}]$ to determine whether the system $A \mathbf{x}=\mathbf{b}$ is consistent, we end up with the echelon form $[R: \mathbf{c}]$, where in general $\mathbf{c} \neq \mathbf{b}$ (the row operations affect the augmented column). Here's an example that shows the proposition failing:

$$
[A: \mathbf{b}]=\left[\begin{array}{l:l}
0 & 0 \\
1 & 1
\end{array}\right], \quad \text { but } \quad[R: \mathbf{b}]=\left[\begin{array}{l:l}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

$[A: \mathbf{b}]$ represents a consistent system (with unique solution $\mathbf{x}=[1]$), but $[R: \mathbf{b}]$ represents an inconsistent system (it's the same system from the counterexample to $\mathbf{3 . 1}$).

Q3.6. If A, B are $n \times n$ matrices then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
A3.6. False. Let $A=B=I$, the $n \times n$ identity matrix, for $n \geqslant 2$. Then $\operatorname{det}(A)+\operatorname{det}(B)=1+1 \neq 2^{n}=$ $\operatorname{det}(A+B)$.

Q3.7. If A is a square matrix such that A^{2} is invertible, then A must be invertible.
A3.7. True. Let $B=\left(A^{2}\right)^{-1}$. I claim that A is invertible wtih inverse $A B$. We have

$$
A(A B)=\left(A^{2}\right) B=\left(A^{2}\right)\left(A^{2}\right)^{-1}=I
$$

This shows that A is onto (it has a right inverse). For square matrices, this is equivalent to having a left inverse, so A is invertible.

An alternate argument is that $0 \neq \operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}$ so $\operatorname{det}(A) \neq 0$ and A must be invertible by the invertible matrix theorem.

Q3.8. If $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis for \mathbb{R}^{3} and A, B are 4×3 matrices satisfying $A \mathbf{b}_{i}=B \mathbf{b}_{i}$ for $i=1,2,3$, then $A=B$.
A3.8. True. Since b_{1}, b_{2}, b_{3} is a basis of \mathbb{R}^{3}, we can express the standard basis vector e_{1} as a linear combination $e_{1}=c_{1} b_{1}+c_{2} b_{2}+c_{3} b_{3}$. Thus,

$$
A e_{1}=A\left(c_{1} b_{1}+c_{2} b_{2}+c_{3} b_{3}\right)=c_{1} A b_{1}+\ldots c_{3} A b_{3}=c_{1} B b_{1}+\ldots+c_{3} B b_{3}=B\left(c_{1} b_{1}+\ldots+c_{3} b_{3}\right)=B e_{1}
$$

Repeating the argument with e_{2}, e_{3} shows that $A=B$.

Q3.9. If H is a subspace of $\mathbb{R}^{5}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{4} \in H$, and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ are linearly independent, then $\operatorname{dim}(H) \geqslant 4$.
A3.9. True. Suppose $\operatorname{dim}(H)=k$ and b_{1}, \ldots, b_{k} is a basis of H. Let B be the $5 \times k$ matrix with b_{1}, \ldots, b_{k} as its columns. By the spanning property, we can write $v_{i}=B x_{i}$ for some vectors $x_{i} \in \mathbb{R}^{k}$. If $k<4$ then by the too many vectors theorem, there must be a nontrivial linear dependence $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}=0$. Multiplying by B, we find that $c_{1} v_{1}+\ldots+c_{4} v_{4}=0$, contradicting our assumption that v_{1}, \ldots, v_{4} are linearly independent. Thus $k \geqslant 4$ and $\operatorname{dim}(H) \geqslant 4$.

Q3.10. If H is a subspace of \mathbb{R}^{5} and $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}=H$, then $\operatorname{dim}(H) \geqslant 4$.
A3.10. False. In this case, taking $\mathbf{v}_{1}=\cdots=\mathbf{v}_{4}=\mathbf{0}$, we have $H=\{\mathbf{0}\}$ which does not have dimension $\geqslant 4$. On the other hand, it is true that if a subspace is spanned by k vectors, then its dimension is $\leqslant k$.

4. Linear Systems

Q4. Give an example of each of the following, explaining why it has the required property, or explain why no example exists.

Q4.1. Two vectors $\mathbf{b}_{1}, \mathbf{b}_{2} \in \mathbb{R}^{3}$ and a 3×3 matrix A such that the linear system $A \mathbf{x}=\mathbf{b}_{1}$ has exactly one solution and the linear system $A \mathbf{x}=\mathbf{b}_{2}$ is inconsistent.
A4.1. This is impossible. If there is a vector \mathbf{b}_{1} for which $A \mathbf{x}=\mathbf{b}_{1}$ has exactly one solution, then $A \mathbf{x}=\mathbf{0}$ has exactly one solution, in which case A represents a one-to-one transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Since A is square, this means A is also onto, and therefore that there can be no $\mathbf{b}_{2} \in \mathbb{R}^{3}$ for which $A \mathbf{x}=\mathbf{b}_{2}$ is inconsistent.

Q4.2. Two nonzero 2×2 matrices A and B such that

$$
(A+B)^{2}=A^{2}+B^{2}
$$

A4.2. Consider the following two matrices.

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

We can check that $A^{2}=A, B^{2}=B$, and $A B=B A=0$ (the zero matrix). So $(A+B)^{2}=A^{2}+A B+B A+$ $B^{2}=A^{2}+B^{2}$, as desired.

Q4.3. An onto linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] .
$$

A4.3. This is impossible. By adding the two given equations and applying linearity, one has

$$
T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=T\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=0
$$

Thus, $T(x)=0$ does not have a unique solution so T is not one to one. But since $m=n$ this means that T cannot be onto.

Q4.4. $A 2 \times 4$ matrix A such that $\operatorname{Null}(A)$ has dimension equal to 3 .
A4.4. This is absolutely possible. One example is

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The columnspace of this matrix is $\operatorname{span}\{(1,0)\}$, so $\operatorname{dim} \operatorname{Col}(A)=1$ and therefore $\operatorname{dim} \operatorname{Null}(A)=4-1=3$.

5. Outside Span

Q5. Consider the following vectors in \mathbb{R}^{3}

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]
$$

Find the first vector in this list which is not in the span of the other vectors. Explain your reasoning.
A5. The statement $\mathbf{v}_{i} \notin \operatorname{span}\left\{\mathbf{v}_{j} \mid j \neq i\right\}$ is equivalent to saying that $a_{i}=0$ in every linear dependence

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+a_{4} \mathbf{v}_{4}=\mathbf{0}
$$

(otherwise, we could perform the same manipulation we discussed in 3.4). We are looking for the smallest i such that every such dependence atisfies $a_{i}=0$.

The set of all linear dependencies between the given vectors is given by the null space of the matrix with these vectors as its columns. Let's row-reduce the matrix whose columns are $\left\{\mathbf{v}_{i}\right\}$.

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
2 & 0 & 3 & -1 \\
3 & 2 & 2 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
0 & -2 & 5 & -5 \\
0 & -1 & 5 & -5
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
0 & -2 & 5 & -5 \\
0 & 0 & -5 & 5
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
0 & -2 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right] .
\end{aligned}
$$

Notice that the matrix above has one free variable. That means its nullspace equals $\operatorname{span}\{(1,0,-1,-1)\}$, and all linear dependencies are multiples of:

$$
\mathbf{v}_{1}+0 \mathbf{v}_{2}-1 \mathbf{v}_{3}-1 \mathbf{v}_{4}=\mathbf{0}
$$

We conclude that \mathbf{v}_{2} is the first vector above not in the span of the others.

6. Inverse

Q6. Consider the matrix

$$
A=\left[\begin{array}{rrr}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]
$$

Q6a. Is A invertible? If so, compute its inverse. If not, explain why.
A6a. We can compute the determinant by cofactor expanding:
$\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{rrr}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]=0 \operatorname{det}\left[\begin{array}{rr}0 & 3 \\ -3 & 8\end{array}\right]-1 \operatorname{det}\left[\begin{array}{ll}1 & 3 \\ 4 & 8\end{array}\right]+2 \operatorname{det}\left[\begin{array}{rr}1 & 0 \\ 4 & -3\end{array}\right]=-(-4)+2(-3)=-2$.
Thus A is invertible, since its determinant is nonzero. We can compute the inverse by row reduction.

$$
\begin{aligned}
{\left[\begin{array}{rrr:lrl}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{rrr:rrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -4 & 0 & -4 & 1
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{rrr:rrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & -4 & 1
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right] .
\end{aligned}
$$

We conclude that

$$
A^{-1}=\left[\begin{array}{rrr}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]
$$

Q6b. Find a solution $\mathbf{x} \in \mathbb{R}^{3}$ to the linear system

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

A6b. The quickest way to produce this solution is simply to multiply $(1,0,1)$ by A^{-1}, which we computed above. The solution is

$$
\mathbf{x}=\left[\begin{array}{rrr}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-6 \\
-3 \\
2
\end{array}\right]
$$

Q6c. Is the solution you found above unique? Explain why or why not.
A6c. Yes - since A is invertible, for any $\mathbf{b} \in \mathbb{R}^{3}$, the system $A \mathbf{x}=\mathbf{b}$ is consistent and has the unique solution $\mathbf{b}=A^{-1} \mathbf{x}$.

7. Determinant

Q7. Find the determinant of the matrix

$$
A=\left[\begin{array}{rrrrr}
0 & 2 & 3 & 4 & 5 \\
1 & 0 & 3 & 4 & 5 \\
-1 & 0 & 3 & 4 & 5 \\
0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

A7. Notice that by replacing R_{3} by $R_{2}+R_{3}$, and then swapping R_{1} and R_{2}, we obtain the matrix

$$
B=\left[\begin{array}{rrrrr}
1 & 0 & 3 & 4 & 5 \\
0 & 2 & 3 & 4 & 5 \\
0 & 0 & 6 & 8 & 10 \\
0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

Since we obtained B from A by performing a row addition and a single $\operatorname{rowswap}$, $\operatorname{det}(B)=-\operatorname{det}(A)$. And since B is upper-triangular, its determinant is the product of the diagonal entries: $\operatorname{det}(B)=1 \cdot 2 \cdot 6 \cdot 4 \cdot 4=192$. Thus $\operatorname{det}(A)=-192$.

8. Both Subspaces

Q8. Consider the matrices

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 4 & -2 \\
-1 & 2 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & -2 & 1 \\
-1 & -3 & 1
\end{array}\right]
$$

Q8a. Find a nonzero vector $\mathbf{v} \in \mathbb{R}^{3}$ which is an element of both the subspaces $\operatorname{Null}(A) \subset \mathbb{R}^{3}$ and $\operatorname{Col}(B) \subset$ \mathbb{R}^{3}. Explain your reasoning.

A8a. We first find a basis for the nullspace of A. Row-reducing:

$$
\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 4 & -2 \\
-1 & 2 & -1
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \operatorname{Null}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\} .
$$

We'll call the two vectors above $\mathbf{v}_{1}, \mathbf{v}_{2}$, and we'll call the columns of $B \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$. We now seek a vector that is both a linear combination of the $\left\{\mathbf{v}_{i}\right\}$ and of the $\left\{\mathbf{w}_{i}\right\}$. One way to do this is to find a linear dependence $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{w}_{1}+a_{4} \mathbf{w}_{2}+a_{5} \mathbf{w}_{3}$. Then the two vectors $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}=-\left(a_{3} \mathbf{w}_{1}+a_{4} \mathbf{w}_{2}+a_{5} \mathbf{w}_{3}\right)$ are the same; one in the nullspace of A, and the other in the columnspace of B. Provided a_{1}, a_{2} are not both zero, that vector is guaranteed nonzero since the $\left\{\mathbf{v}_{i}\right\}$ are linearly independent. So we want to solve $C \mathbf{x}=\mathbf{0}$, where

$$
C=\left[\begin{array}{rrrrr}
2 & -1 & 1 & -1 & 1 \\
1 & 0 & 0 & -2 & 1 \\
0 & 1 & -1 & -3 & 1
\end{array}\right]
$$

Row-reducing, we have

$$
\left[\begin{array}{rrrrr}
2 & -1 & 1 & -1 & 1 \\
1 & 0 & 0 & -2 & 1 \\
0 & 1 & -1 & -3 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 1 \\
0 & 1 & -1 & -3 & 1 \\
0 & -1 & 1 & 3 & -1
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & 1 \\
0 & 1 & -1 & -3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This linear system has three free variables $\left(w_{1}, w_{2}, w_{3}\right)$, so actually any nonzero vector in $\operatorname{Col}(B)$ is a valid solution to the problem! For example, the vectors $(2,1,0),(1,1,1),(-1,-2,-3)$ and any nonzero linear combinations of them are valid answers. In fact, in this problem, we have $\operatorname{Nul}(A)=\operatorname{Col}(B)$.

Q8b. Are the columns of the product $A B$ linearly independent? Explain why or why not based on your answer to $8 a$, without doing any matrix multiplication.
A8b. The columns of $A B$ are not linearly independent. Since we found a nonzero vector $(1,1,1) \in \operatorname{Null}(A) \cap$ $\operatorname{Col}(B)$, there is some vector \mathbf{x} so that $B \mathbf{x}=(1,1,1)$ and $A(B \mathbf{x})=\mathbf{0}$ (in fact, $\mathbf{x}=(0,0,1)$; this means that the third column of $A B$ is zero).

9. Rotation and Reflection

Q9. Let $T_{\pi / 6}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation which rotates a vector in \mathbb{R}^{2} counterclockwise by $\pi / 6$ radians. Let $T_{\mathrm{ref}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which reflects a vector $\mathbf{x}=\left(x_{1}, x_{2}\right)$ across the line $x_{1}=x_{2}$.

Q9a. Sketch a cartoon illustrating what these linear transformations do to the vector $\mathbf{e}_{1}=(1,0)$.
A9a. Below are cartoons of these transformations acting on \mathbf{e}_{1}.

Q9b. Find the standard matrices for $T_{\pi / 6}$ and $T_{\text {ref }}$.
A9b. We find the standard matrix for $T_{\pi / 6}$ using trigonometry. Rotating the point $(1,0)$ counterclockwise by $\pi / 6$ yields $(\cos (\pi / 6), \sin (\pi / 6))=(\sqrt{3} / 2,1 / 2)$. Rotating $(0,1)$ counterclockwise by $\pi / 6$ yields $(-\sin (\pi / 6), \cos (\pi / 6))=(-1 / 2, \sqrt{3} / 2)$. So the standard matrix A for $T_{\pi / 6}$ is

$$
A=\left[\begin{array}{rr}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right]
$$

To find the standard matrix for $T_{\text {ref }}$, note that reflecting through the line $x_{1}=x_{2}$ has the effect of swapping the coordinates of a point. That is, $T_{\text {ref }}\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}$ and $T_{\text {ref }}\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}$. Therefore the standard matrix B of $T_{\text {ref }}$ is

$$
B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Q9c. Find a nonzero vector $v \in \mathbb{R}^{2}$ such that $\left(T_{\pi / 6} \circ T_{\mathrm{ref}}\right)(\mathbf{v})=\left(T_{\mathrm{ref}} \circ T_{\pi / 6}\right)(\mathbf{v})$ or explain why no such vector exists.
A9c. We compute

$$
\begin{aligned}
A B-B A & =\left[\begin{array}{rr}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right] \\
& =\left[\begin{array}{rr}
-1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]-\left[\begin{array}{rr}
1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

This matrix in invertible. Thus there is no nonzero vector \mathbf{v} with $(A B-B A) \mathbf{v}=0$, equivalently $A B \mathbf{v}=B A \mathbf{v}$, or equivalently, with $\left(T_{\pi / 6} \circ T_{\text {ref }}\right)(\mathbf{v})=\left(T_{\text {ref }} \circ T_{\pi / 6}\right)(\mathbf{v})$ since matrix multiplication corresponds to composition of linear transformations..

