MATH 54: MIDTERM 1 SOLUTIONS 23 Feb 2021

3. True or False

Q3. Select "true" (i.e., always true) or "false" (i.e., sometimes false) for each statement.

Q3.1. If the linear system $A\mathbf{x} = \mathbf{0}$ has at least one solution then $A\mathbf{x} = \mathbf{b}$ must have at least one solution.

A3.1. False. The homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least the trivial solution $(\mathbf{x} = \mathbf{0})$ but of course we can find a matrix A and vector **b** for which $A\mathbf{x} = \mathbf{b}$ is inconsistent. For example, set

$$A = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 0\\ 1 \end{bmatrix}.$$

Q3.2. If the linear system $A\mathbf{x} = \mathbf{0}$ has at most one solution then $A\mathbf{x} = \mathbf{b}$ has at most one solution.

A3.2. True. Suppose \mathbf{v}, \mathbf{w} are two distinct solutions to $A\mathbf{x} = \mathbf{b}$. Then $A(\mathbf{v} - \mathbf{w}) = A\mathbf{v} - A\mathbf{w} = \mathbf{b} - \mathbf{b} = \mathbf{0}$ and so $\mathbf{v} - \mathbf{w} \neq \mathbf{0}$ is a nontrivial solution to $A\mathbf{x} = \mathbf{0}$. Thus, along with the trivial solution, $A\mathbf{x} = \mathbf{0}$ has two distinct solutions.

Q3.3. If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$ are vectors such that $\{\mathbf{x}, \mathbf{y}\}$ are linearly independent and $\{\mathbf{y}, \mathbf{z}\}$ are linearly independent then $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ must be linearly independent.

A3.3. False. Consider the vectors

 $\mathbf{x} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \qquad \mathbf{z} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$

Any set containing two of these vectors is linearly independent (because no two are parallel), but the three vectors are linearly dependent because $\mathbf{x} + \mathbf{y} = \mathbf{z}$.

Q3.4. If $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^3$ are linearly independent vectors and $\mathbf{v}_3 \notin \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ must be linearly independent.

A3.4. True. Suppose $\{\mathbf{v}_1, \mathbf{v}_2\}$ are linearly independent and $\mathbf{v}_3 \notin \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$, but for contradiction that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are linearly dependent. Then there are a_1, a_2, a_3 not all zero so that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{0}$. We must have $a_3 = 0$, since otherwise $\mathbf{v}_3 = -(a_1/a_3)\mathbf{v}_1 - (a_2/a_3)\mathbf{v}_2 \in \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. But now $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 = \mathbf{0}$, a nontrivial linear dependence among $\{\mathbf{v}_1, \mathbf{v}_2\}$. This contradicts the assumption that $\{\mathbf{v}_1, \mathbf{v}_2\}$ are linearly independent. We conclude that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are linearly independent.

An alternate argument is simply to apply Theorem 7 in the book: if the vectors were linearly dependent then either $v_2 \in span\{v_1\}$ or $v_3 \in span\{v_1, v_2\}$, both of which are ruled out by the hypothesis.

Q3.5. If R is the reduced row echelon form of an $m \times n$ matrix A and $A\mathbf{x} = \mathbf{b}$ is consistent for some vector $\mathbf{b} \in \mathbb{R}^m$, then $R\mathbf{x} = \mathbf{b}$ must be consistent.

A3.5. False. When we row-reduce the augmented matrix $[A : \mathbf{b}]$ to determine whether the system $A\mathbf{x} = \mathbf{b}$ is consistent, we end up with the echelon form $[R : \mathbf{c}]$, where in general $\mathbf{c} \neq \mathbf{b}$ (the row operations affect the augmented column). Here's an example that shows the proposition failing:

$$[A:\mathbf{b}] = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \quad \text{but} \quad [R:\mathbf{b}] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $[A: \mathbf{b}]$ represents a consistent system (with unique solution $\mathbf{x} = \begin{bmatrix} 1 \end{bmatrix}$), but $[R: \mathbf{b}]$ represents an inconsistent system (it's the same system from the counterexample to **3.1**).

Q3.6. If A, B are $n \times n$ matrices then det(A + B) = det(A) + det(B).

A3.6. False. Let A = B = I, the $n \times n$ identity matrix, for $n \ge 2$. Then $det(A) + det(B) = 1 + 1 \ne 2^n = det(A + B)$.

Q3.7. If A is a square matrix such that A^2 is invertible, then A must be invertible.

A3.7. True. Let $B = (A^2)^{-1}$. I claim that A is invertible with inverse AB. We have

$$A(AB) = (A^2)B = (A^2)(A^2)^{-1} = I.$$

This shows that A is onto (it has a right inverse). For square matrices, this is equivalent to having a left inverse, so A is invertible.

An alternate argument is that $0 \neq \det(A^2) = \det(A)^2$ so $\det(A) \neq 0$ and A must be invertible by the invertible matrix theorem.

Q3.8. If $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for \mathbb{R}^3 and A, B are 4×3 matrices satisfying $A\mathbf{b}_i = B\mathbf{b}_i$ for i = 1, 2, 3, then A = B.

A3.8. True. Since b_1, b_2, b_3 is a basis of \mathbb{R}^3 , we can express the standard basis vector e_1 as a linear combination $e_1 = c_1b_1 + c_2b_2 + c_3b_3$. Thus,

$$Ae_1 = A(c_1b_1 + c_2b_2 + c_3b_3) = c_1Ab_1 + \dots + c_3Ab_3 = c_1Bb_1 + \dots + c_3Bb_3 = B(c_1b_1 + \dots + c_3b_3) = Be_1.$$

Repeating the argument with e_2, e_3 shows that A = B.

Q3.9. If H is a subspace of \mathbb{R}^5 , $\mathbf{v}_1, \ldots, \mathbf{v}_4 \in H$, and $\{\mathbf{v}_1, \ldots, \mathbf{v}_4\}$ are linearly independent, then dim $(H) \ge 4$.

A3.9. True. Suppose $\dim(H) = k$ and b_1, \ldots, b_k is a basis of H. Let B be the $5 \times k$ matrix with b_1, \ldots, b_k as its columns. By the spanning property, we can write $v_i = Bx_i$ for some vectors $x_i \in \mathbb{R}^k$. If k < 4 then by the too many vectors theorem, there must be a nontrivial linear dependence $c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 = 0$. Multiplying by B, we find that $c_1v_1 + \ldots + c_4v_4 = 0$, contradicting our assumption that v_1, \ldots, v_4 are linearly independent. Thus $k \ge 4$ and dim $(H) \ge 4$.

Q3.10. If H is a subspace of \mathbb{R}^5 and span $\{\mathbf{v}_1, \ldots, \mathbf{v}_4\} = H$, then dim $(H) \ge 4$.

A3.10. False. In this case, taking $\mathbf{v}_1 = \cdots = \mathbf{v}_4 = \mathbf{0}$, we have $H = \{\mathbf{0}\}$ which does not have dimension ≥ 4 . On the other hand, it is true that if a subspace is spanned by k vectors, then its dimension is $\leq k$.

4. LINEAR SYSTEMS

 $\mathbf{Q4}$. Give an example of each of the following, explaining why it has the required property, or explain why no example exists.

Q4.1. Two vectors $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^3$ and a 3×3 matrix A such that the linear system $A\mathbf{x} = \mathbf{b}_1$ has exactly one solution and the linear system $A\mathbf{x} = \mathbf{b}_2$ is inconsistent.

A4.1. This is impossible. If there is a vector \mathbf{b}_1 for which $A\mathbf{x} = \mathbf{b}_1$ has exactly one solution, then $A\mathbf{x} = \mathbf{0}$ has exactly one solution, in which case A represents a one-to-one transformation $\mathbb{R}^3 \to \mathbb{R}^3$. Since A is square, this means A is also onto, and therefore that there can be no $\mathbf{b}_2 \in \mathbb{R}^3$ for which $A\mathbf{x} = \mathbf{b}_2$ is inconsistent.

Q4.2. Two nonzero 2×2 matrices A and B such that

$$(A+B)^2 = A^2 + B^2.$$

A4.2. Consider the following two matrices.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

We can check that $A^2 = A$, $B^2 = B$, and AB = BA = 0 (the zero matrix). So $(A+B)^2 = A^2 + AB + BA + B^2 = A^2 + B^2$, as desired.

Q4.3. An onto linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T\left(\left[\begin{array}{c}1\\-1\end{array}\right]\right) = \left[\begin{array}{c}1\\2\end{array}\right] \quad and \quad T\left(\left[\begin{array}{c}1\\2\end{array}\right]\right) = \left[\begin{array}{c}-1\\-2\end{array}\right].$$

A4.3. This is impossible. By adding the two given equations and applying linearity, one has

$$T\left(\left[\begin{array}{c}2\\1\end{array}\right]\right) = T\left(\left[\begin{array}{c}1\\-1\end{array}\right] + \left[\begin{array}{c}1\\2\end{array}\right]\right) = 0$$

Thus, T(x) = 0 does not have a unique solution so T is not one to one. But since m = n this means that T cannot be onto.

Q4.4. A 2×4 matrix A such that Null(A) has dimension equal to 3.

A4.4. This is absolutely possible. One example is

$$A = \left[\begin{array}{rrrr} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

The columnspace of this matrix is span{(1,0)}, so dim Col(A) = 1 and therefore dim Null(A) = 4 - 1 = 3.

5. Outside Span

Q5. Consider the following vectors in \mathbb{R}^3

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} -1\\3\\2 \end{bmatrix}, \qquad \mathbf{v}_4 = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$$

Find the first vector in this list which is not in the span of the other vectors. Explain your reasoning.

A5. The statement $\mathbf{v}_i \notin \operatorname{span}\{\mathbf{v}_j \mid j \neq i\}$ is equivalent to saying that $a_i = 0$ in every linear dependence

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 + a_4\mathbf{v}_4 = \mathbf{0}$$

(otherwise, we could perform the same manipulation we discussed in 3.4). We are looking for the smallest i such that every such dependence atisfies $a_i = 0$.

The set of all linear dependencies between the given vectors is given by the null space of the matrix with these vectors as its columns. Let's row-reduce the matrix whose columns are $\{\mathbf{v}_i\}$.

$$\begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 0 & 3 & -1 \\ 3 & 2 & 2 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & 5 & -5 \\ 0 & -1 & 5 & -5 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & -5 & 5 \end{bmatrix}$$
$$\rightsquigarrow \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Notice that the matrix above has one free variable. That means its nullspace equals span $\{(1, 0, -1, -1)\}$, and all linear dependencies are multiples of:

$$\mathbf{v}_1 + 0\,\mathbf{v}_2 - 1\,\mathbf{v}_3 - 1\,\mathbf{v}_4 = \mathbf{0},$$

We conclude that \mathbf{v}_2 is the first vector above not in the span of the others.

Q6. Consider the matrix

$$A = \left[\begin{array}{rrrr} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{array} \right].$$

Q6a. Is A invertible? If so, compute its inverse. If not, explain why.

A6a. We can compute the determinant by cofactor expanding:

$$\det(A) = \det \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} = 0 \det \begin{bmatrix} 0 & 3 \\ -3 & 8 \end{bmatrix} - 1 \det \begin{bmatrix} 1 & 3 \\ 4 & 8 \end{bmatrix} + 2 \det \begin{bmatrix} 1 & 0 \\ 4 & -3 \end{bmatrix} = -(-4) + 2(-3) = -2.$$

Thus A is invertible, since its determinant is nonzero. We can compute the inverse by row reduction.

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix}$$
$$\rightsquigarrow \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix}$$
$$\rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -3 & -4 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix}$$
$$\rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -9/2 & 7 & -3/2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix}$$

We conclude that

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

Q6b. Find a solution $\mathbf{x} \in \mathbb{R}^3$ to the linear system

$$A\mathbf{x} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}.$$

A6b. The quickest way to produce this solution is simply to multiply (1,0,1) by A^{-1} , which we computed above. The solution is

$$\mathbf{x} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 \\ -3 \\ 2 \end{bmatrix}$$

Q6c. Is the solution you found above unique? Explain why or why not.

A6c. Yes – since A is invertible, for any $\mathbf{b} \in \mathbb{R}^3$, the system $A\mathbf{x} = \mathbf{b}$ is consistent and has the unique solution $\mathbf{b} = A^{-1}\mathbf{x}$.

7. Determinant

Q7. Find the determinant of the matrix

$$A = \begin{bmatrix} 0 & 2 & 3 & 4 & 5 \\ 1 & 0 & 3 & 4 & 5 \\ -1 & 0 & 3 & 4 & 5 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}.$$

A7. Notice that by replacing R_3 by $R_2 + R_3$, and then swapping R_1 and R_2 , we obtain the matrix

$$B = \begin{bmatrix} 1 & 0 & 3 & 4 & 5 \\ 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 6 & 8 & 10 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}.$$

Since we obtained B from A by performing a row addition and a single rowswap, $\det(B) = -\det(A)$. And since B is upper-triangular, its determinant is the product of the diagonal entries: $\det(B) = 1 \cdot 2 \cdot 6 \cdot 4 \cdot 4 = 192$. Thus $\det(A) = -192$.

8. Both Subspaces

Q8. Consider the matrices

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ -1 & 2 & -1 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 & -1 & 1 \\ 0 & -2 & 1 \\ -1 & -3 & 1 \end{bmatrix}$$

Q8a. Find a nonzero vector $\mathbf{v} \in \mathbb{R}^3$ which is an element of both the subspaces $\operatorname{Null}(A) \subset \mathbb{R}^3$ and $\operatorname{Col}(B) \subset \mathbb{R}^3$. Explain your reasoning.

A8a. We first find a basis for the nullspace of A. Row-reducing:

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ -1 & 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \operatorname{Null}(A) = \operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

We'll call the two vectors above \mathbf{v}_1 , \mathbf{v}_2 , and we'll call the columns of $B \mathbf{w}_1$, \mathbf{w}_2 , \mathbf{w}_3 . We now seek a vector that is both a linear combination of the $\{\mathbf{v}_i\}$ and of the $\{\mathbf{w}_i\}$. One way to do this is to find a linear dependence $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{w}_1 + a_4\mathbf{w}_2 + a_5\mathbf{w}_3$. Then the two vectors $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 = -(a_3\mathbf{w}_1 + a_4\mathbf{w}_2 + a_5\mathbf{w}_3)$ are the same; one in the nullspace of A, and the other in the columnspace of B. Provided a_1, a_2 are not both zero, that vector is guaranteed nonzero since the $\{\mathbf{v}_i\}$ are linearly independent. So we want to solve $C\mathbf{x} = \mathbf{0}$, where

$$C = \left[\begin{array}{rrrrr} 2 & -1 & 1 & -1 & 1 \\ 1 & 0 & 0 & -2 & 1 \\ 0 & 1 & -1 & -3 & 1 \end{array} \right]$$

Row-reducing, we have

$$\begin{bmatrix} 2 & -1 & 1 & -1 & 1 \\ 1 & 0 & 0 & -2 & 1 \\ 0 & 1 & -1 & -3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 1 & -1 & -3 & 1 \\ 0 & -1 & 1 & 3 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 1 & -1 & -3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

This linear system has three free variables (w_1, w_2, w_3) , so actually any nonzero vector in $\operatorname{Col}(B)$ is a valid solution to the problem! For example, the vectors (2, 1, 0), (1, 1, 1), (-1, -2, -3) and any nonzero linear combinations of them are valid answers. In fact, in this problem, we have $Nul(A) = \operatorname{Col}(B)$.

Q8b. Are the columns of the product AB linearly independent? Explain why or why not based on your answer to 8a, without doing any matrix multiplication.

A8b. The columns of AB are not linearly independent. Since we found a nonzero vector $(1, 1, 1) \in \text{Null}(A) \cap \text{Col}(B)$, there is some vector \mathbf{x} so that $B\mathbf{x} = (1, 1, 1)$ and $A(B\mathbf{x}) = \mathbf{0}$ (in fact, $\mathbf{x} = (0, 0, 1)$; this means that the third column of AB is zero).

9. ROTATION AND REFLECTION

Q9. Let $T_{\pi/6} : \mathbb{R}^2 \to \mathbb{R}^2$ denote the linear transformation which rotates a vector in \mathbb{R}^2 counterclockwise by $\pi/6$ radians. Let $T_{\text{ref}} : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which reflects a vector $\mathbf{x} = (x_1, x_2)$ across the line $x_1 = x_2$.

Q9a. Sketch a cartoon illustrating what these linear transformations do to the vector $\mathbf{e}_1 = (1, 0)$.

A9a. Below are cartoons of these transformations acting on \mathbf{e}_1 .

Q9b. Find the standard matrices for $T_{\pi/6}$ and T_{ref} .

A9b. We find the standard matrix for $T_{\pi/6}$ using trigonometry. Rotating the point (1,0) counterclockwise by $\pi/6$ yields $(\cos(\pi/6), \sin(\pi/6)) = (\sqrt{3}/2, 1/2)$. Rotating (0,1) counterclockwise by $\pi/6$ yields $(-\sin(\pi/6), \cos(\pi/6)) = (-1/2, \sqrt{3}/2)$. So the standard matrix A for $T_{\pi/6}$ is

$$A = \left[\begin{array}{cc} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{array} \right].$$

To find the standard matrix for T_{ref} , note that reflecting through the line $x_1 = x_2$ has the effect of swapping the coordinates of a point. That is, $T_{\text{ref}}(\mathbf{e}_1) = \mathbf{e}_2$ and $T_{\text{ref}}(\mathbf{e}_2) = \mathbf{e}_1$. Therefore the standard matrix B of T_{ref} is

$$B = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Q9c. Find a nonzero vector $v \in \mathbb{R}^2$ such that $(T_{\pi/6} \circ T_{ref})(\mathbf{v}) = (T_{ref} \circ T_{\pi/6})(\mathbf{v})$ or explain why no such vector exists.

A9c. We compute

$$AB - BA = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$
$$= \begin{bmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix} - \begin{bmatrix} 1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

This matrix in invertible. Thus there is no nonzero vector \mathbf{v} with $(AB-BA)\mathbf{v} = 0$, equivalently $AB\mathbf{v} = BA\mathbf{v}$, or equivalently, with $(T_{\pi/6} \circ T_{\text{ref}})(\mathbf{v}) = (T_{\text{ref}} \circ T_{\pi/6})(\mathbf{v})$ since matrix multiplication corresponds to composition of linear transformations.