Midterm 1 Solutions

Problem 1

In order to solve for $C_{A, 2}, C_{B, 2}$, and $C_{P, 2}$, in the outlet stream of tank 2 , the concentrations of A and B entering tank 2, $C_{A, l}$ and $C_{B, l}$ respectively, must be found.

First, do a mass balance on species A in tank 1:

$$
\begin{equation*}
\frac{d n_{A}}{d t}=\dot{n}_{A, \text { in }}-\dot{n}_{A, 1}+\int_{C V} r_{A, 1}(\underline{x}, t) d V \tag{1}
\end{equation*}
$$

Process is at steady state. The tank is well-mixed such that reaction rate does not depend on position and $C_{A, I}=C_{A}$ in the tank.

$$
\begin{equation*}
0=C_{A, \text { in }} Q-C_{A, 1} Q-k_{1} C_{A, 1} V \tag{2}
\end{equation*}
$$

Write in terms of tau:

$$
\begin{align*}
& 0=C_{A, \text { in }}-C_{A, 1}-k_{1} C_{A, 1} \tau \tag{3}\\
& 0=C_{A, \text { in }}-C_{A, 1}\left(1+k_{1}\right) \tau \tag{4}\\
& C_{A, 1}=\frac{C_{A, \text { in }}}{\left(1+k_{1}\right) \tau}=\mathbf{1} \frac{\mathbf{m o l}}{\boldsymbol{L}} \tag{5}
\end{align*}
$$

Then, a mass balance on species B in tank 1 using the same assumptions listed above:

$$
\begin{gather*}
\frac{d n_{B}}{d t}=\dot{n}_{B, \text { in }}-\dot{n}_{B, 1}+\int_{C V} r_{B, 1}(\underline{x}, t) d V \tag{6}\\
0=-C_{B, 1} Q+k_{1} C_{A, 1} V \tag{7}\\
0=-C_{B, 1}+k_{1} C_{A, 1} \tau \tag{8}\\
C_{B, 1}=k_{1} C_{A, 1} \tau=\mathbf{m} \frac{\boldsymbol{m o l}}{\boldsymbol{L}} \tag{9}
\end{gather*}
$$

Now, the second tank is the control volume and mass balances on species A, B, and P are used.
Species mass balance on species A in tank 2:

$$
\begin{gather*}
\frac{d n_{A}}{d t}=\dot{n}_{A, 1}-\dot{n}_{A, 2}+\int_{C V} r_{A, 2}(\underline{x}, t) d V \tag{10}\\
0=C_{A, 1} Q-C_{A, 2} Q-k_{2} C_{A, 2} V \tag{11}\\
0=C_{A, 1}-C_{A, 2}-k_{2} C_{A, 2} \tau \tag{12}\\
0=C_{A, 1}-C_{A, 2}\left(1+k_{2}\right) \tau \tag{13}\\
C_{A, 2}=\frac{C_{A, 1}}{\left(1+k_{2}\right) \tau}=\frac{\mathbf{1}}{\mathbf{3} \boldsymbol{m}} \frac{\boldsymbol{l}}{\boldsymbol{L}} \tag{14}
\end{gather*}
$$

Species mass balance on species B in tank 2:

$$
\begin{gather*}
\frac{d n_{B}}{d t}=\dot{n}_{B, 1}-\dot{n}_{B, 2}+\int_{C V} r_{B, 2}(\underline{x}, t) d V \tag{10}\\
0=C_{B, 1} Q-C_{B, 2} Q-k_{3} C_{B, 2} V \tag{11}
\end{gather*}
$$

$$
\begin{gather*}
0=C_{B, 1}-C_{B, 2}\left(1+k_{3} \tau\right) \tag{12}\\
C_{B, 2}=\frac{C_{B, 1}}{\left(1+k_{3}\right) \tau}=\frac{\mathbf{1}}{\mathbf{4}} \frac{\mathbf{o l}}{\boldsymbol{L}} \tag{13}
\end{gather*}
$$

Species mass balance on species P in tank 2:

$$
\begin{gather*}
\frac{d n_{P}}{d t}=\dot{n}_{P, 1}-\dot{n}_{P, 2}+\int_{C V} r_{P, 2}(\underline{x}, t) d V+\int_{C V} r_{P, 3}(\underline{x}, t) d V \tag{14}\\
0=-C_{P, 2} Q+k_{2} C_{A, 2} V+k_{3} C_{B, 2} V \tag{15}\\
0=-C_{P, 2}+k_{2} C_{A, 2} \tau+k_{3} C_{B, 2} \tau \tag{16}\\
C_{P, 2}=k_{2} C_{A, 2} \tau+k_{3} C_{B, 2} \tau=\frac{\mathbf{1 7}}{\mathbf{1 2}} \frac{\mathbf{m o l}}{\boldsymbol{L}} \tag{17}
\end{gather*}
$$

Problem 2

a. First, do an overall mass balance on the control volume (the entire tank and MOF bed):

$$
\begin{equation*}
\frac{d m}{d t}=\dot{m}_{\mathrm{in}}-\dot{m}_{\mathrm{out}} \tag{1}
\end{equation*}
$$

Since no flows enter or exit the system,

$$
\begin{gather*}
\frac{d m}{d t}=0 \tag{2}\\
M_{w} \frac{d n}{d t}=0 \tag{3}\\
\frac{d n}{d t}=0 \tag{4}\\
N_{0}=n_{\text {MOF }}(t)+n_{\text {Gas }}(t) \tag{5}
\end{gather*}
$$

Do a mass balance on the gas phase to solve for $n_{\text {Gas }}(t)$:

$$
\begin{equation*}
\frac{d n_{\mathrm{Gas}}}{d t}=\dot{n}_{\mathrm{Gas}, \mathrm{in}}-\dot{n}_{\mathrm{Gas}, \mathrm{out}}+\dot{G}_{i} \tag{6}
\end{equation*}
$$

The entire tank and MOF bed are the control volume, so there are no flows in or out of the system.

$$
\begin{equation*}
\frac{d n_{\mathrm{Gas}}}{d t}=-k b P \tag{7}
\end{equation*}
$$

Use ideal gas law to write pressure in terms of moles:

$$
\begin{gather*}
\frac{d n_{\mathrm{Gas}}}{d t}=-\left(\frac{k b R T}{V}\right) n_{\text {Gas }} \tag{8}\\
\int_{N_{0}}^{n_{\text {Gas }}(t)} \frac{d n_{\text {Gas }}}{n_{\text {Gas }}}=\int_{0}^{t}-\left(\frac{k b R T}{V}\right) d t \tag{9}\\
\ln n_{\text {Gas }}(t)-\ln N_{0}=-\left(\frac{k b R T}{V}\right) t \tag{10}\\
n_{\text {Gas }}(t)=N_{0} e^{-\left(\frac{k b R T}{V}\right) t} \tag{11}
\end{gather*}
$$

Then, use equation 5 to solve for $n_{\text {MOF }}(t)$:

$$
\begin{gather*}
n_{\mathrm{MOF}}(t)=N_{0}-N_{0} e^{-\left(\frac{k b R T}{V}\right) t} \tag{12}\\
\boldsymbol{n}_{\text {MOF }}(\boldsymbol{t})=\boldsymbol{N}_{\mathbf{0}}\left(\mathbf{1}-\boldsymbol{e}^{-\left(\frac{\boldsymbol{k} \boldsymbol{R} \boldsymbol{T}}{\boldsymbol{V}}\right) \boldsymbol{t}}\right) \tag{13}
\end{gather*}
$$

b. First calculate the total number of moles that the MOF can adsorb:
$(10,000 \mathrm{~kg} \mathrm{MOF})\left(\frac{5 \mathrm{mmol} \mathrm{CH}_{4}}{g \mathrm{MOF}}\right)\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right)\left(\frac{\mathrm{mol}}{1000 \mathrm{mmol}}\right)=50,000 \mathrm{moles} \mathrm{CH}_{4}$

$$
\begin{align*}
& =300^{0010} \\
& \text { Initially, there are } 75,000 \text { moles of methane in the tank, but the MOF bed can adsorb a } \\
& \text { maximum of 50,000 moles of methane. } \\
& \text { Calculate the time at which maximum capacity is reached using equation 13: } \\
& n_{\text {MOF }}(t)=50,000=N_{0}\left(1-e^{-\left(\frac{k b R T}{V}\right) t}\right) \tag{15}\\
& \frac{50,000}{75,000}=\left(1-e^{-(2 * 0.5 * 8.314 * 300 / 1000) t}\right) \tag{16}\\
& \frac{2}{3}=\left(1-e^{-2.494 t}\right) \tag{17}\\
& \ln \left(\frac{1}{3}\right)=-2.494 t \tag{18}\\
& t=0.44 s \tag{19}
\end{align*}
$$

c. Calculate the pressure of methane left in the tank. From part b, we know 25,000 moles are left in the tank.

$$
\begin{gather*}
P V=n_{\text {gas }} R T \tag{20}\\
P=\frac{n_{g a s} R T}{V} \tag{21}\\
P=\frac{(25,000 \mathrm{~mol})\left(8.314 \frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K})}{1000 \mathrm{~m}^{3}} \tag{22}\\
\boldsymbol{P}=\mathbf{6 2}, \mathbf{3 6 0} \mathbf{P a}
\end{gather*}
$$

