\qquad
SID: \qquad

1) ($\mathbf{1 5}$ pts) The following kinetic data were obtained for the reaction:

$$
2 \operatorname{ICl}(g)+\mathrm{H}_{2}(g) \rightarrow I_{2}(g)+2 \mathrm{HCl}(g)
$$

	Initial Concentration $\left(\mathrm{mmol} \mathrm{L}^{-1}\right)$		
Experiment	$[\mathrm{ICl}]_{0}$	$\left[\mathrm{H}_{2}\right]_{0}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	1.5	1.5	3.7×10^{-7}
2	3.0	1.5	7.4×10^{-7}
3	3.0	4.5	2.2×10^{-6}
4	4.7	2.7	$? ?$

(a) Write the rate law for the reaction (5 pts)
(b) From the data, determine the value of the rate constant (5 pts)
(c) Predict the reaction rate for Experiment 4 (5 pts)
\qquad
SID: \qquad
2) (20 pts) The mechanism for the decomposition for $\mathrm{NO}_{2} \mathrm{Cl}$ is:

$$
\begin{gathered}
\mathrm{NO}_{2} \mathrm{Cl} \stackrel{\stackrel{k_{1}}{\rightleftarrows}}{\underset{k_{-1}}{\leftarrow}} \mathrm{NO}_{2}+\mathrm{Cl} \\
\mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \xrightarrow{k_{2}} \mathrm{NO}_{2}+\mathrm{Cl}_{2}
\end{gathered}
$$

Write out the differential rate law under the following conditions (make sure to eliminate intermediates from your answer):
a) high concentration of $\mathrm{NO}_{2}(10 \mathrm{pts})$
b) low concentration of NO_{2} (10 pts)
\qquad
SID: \qquad
3) (15 pts) A common scheme used to describe reactions in liquids is:

$$
A+B \underset{k_{-1}}{\stackrel{k_{1}}{\leftarrow}}\left(A B^{*}\right) \xrightarrow{k_{2}} P
$$

Write the expression for the rate law in the activation-controlled limit.
\qquad
SID: \qquad
4) ($\mathbf{1 5}$ pts) The decomposition of benzene diazonium chloride

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \xrightarrow{k_{1}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}
$$

follows first order kinetics with a rate constant of $4.3 \times 10^{-5} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. If the initial partial pressure of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$ is 0.0088 atm , calculate its partial pressure after 10.0 hours.
\qquad
SID: \qquad
5) ($\mathbf{1 0}$ pts) Estimate the steric factor P for the following reaction at $355^{\circ} \mathrm{C}$

$$
\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

given the following experimental factors: $A=1.24 \times 10^{6} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}, \sigma=0.50 \times 10^{-18} \mathrm{~m}^{2}$, and $\mu=1.9 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$
\qquad
SID: \qquad
6) ($\mathbf{1 0} \mathbf{~ p t s}$) The hydrolysis of sucrose is a part of the digestive process. To investigate how strongly the rate depends on our body temperature, calculate the rate constant for the hydrolysis of sucrose at $35.0^{\circ} \mathrm{C}$, given that $\mathrm{k}=1.0 \mathrm{~mL} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $37.0^{\circ} \mathrm{C}$ (normal body temperature), and the activation energy of the reaction is $108 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
\qquad
SID: \qquad
7) (15 pts) Certain bacteria use the enzyme penicillinase to decompose penicillin and render it inactive. The Michaelis-Menten constants for this enzyme and substrate are:

$$
\begin{gathered}
K_{\mathrm{m}}=5.3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \\
k_{2}=2.6 \times 10^{3} \mathrm{~s}^{-1} .
\end{gathered}
$$

a) At what substrate concentration will the rate of decomposition be half of the maximum rate? Must show all work for full credit (10 pts)
b) What is the significance of k_{2} in the Michaelis-Menten model of enzyme kinetics (one sentence)? (5 pts)

