SID:

1)	(15 pts) The following kinetic data were obtained for the reaction:	
	$2ICl(g) + H_2(g) \rightarrow I_2(g) + 2HCl(g)$	

	Initial Concentration (mmol L ⁻¹)		
Experiment	$[ICl]_0$	$[H_2]_0$	Initial Rate (mol L ⁻¹ s ⁻¹)
1	1.5	1.5	3.7x10 ⁻⁷
2	3.0	1.5	7.4x10 ⁻⁷
3	3.0	4.5	2.2x10 ⁻⁶
4	4.7	2.7	??

(a) Write the rate law for the reaction (5 pts)

(b) From the data, determine the value of the rate constant (5 pts)

(c) Predict the reaction rate for Experiment 4 (5 pts)

SID: _____

2) (20 pts) The mechanism for the decomposition for NO_2Cl is:

$$NO_2Cl \stackrel{k_1}{\underset{k_{-1}}{\rightarrow}} NO_2 + Cl$$

$$NO_2Cl + Cl \xrightarrow{k_2} NO_2 + Cl_2$$

Write out the differential rate law under the following conditions (make sure to eliminate intermediates from your answer):

a) high concentration of NO₂ (10 pts)

b) low concentration of NO₂ (10 pts)

SID: _____

3) (15 pts) A common scheme used to describe reactions in liquids is:

$$A + B \stackrel{k_1}{\underset{\leftarrow}{\leftarrow}} (AB^*) \stackrel{k_2}{\xrightarrow{}} P$$

Write the expression for the rate law in the activation-controlled limit.

SID: _____

4) (15 pts) The decomposition of benzene diazonium chloride

$$C_6H_5N_2Cl \xrightarrow{k_1} C_6H_5Cl + N_2$$

follows first order kinetics with a rate constant of 4.3×10^{-5} s⁻¹ at 20°C. If the initial partial pressure of $C_6H_5N_2Cl$ is 0.0088 atm, calculate its partial pressure after 10.0 hours.

SID: _____

5) (10 pts) Estimate the steric factor P for the following reaction at 355° C

$$H_2 + C_2 H_4 \to C_2 H_6$$

given the following experimental factors: A = 1.24x10⁶ L mol⁻¹ s⁻¹ , σ = 0.50x10⁻¹⁸ m² , and μ = 1.9 x 10⁻³ kg mol⁻¹

SID: _____

6) **(10 pts)** The hydrolysis of sucrose is a part of the digestive process. To investigate how strongly the rate depends on our body temperature, calculate the rate constant for the hydrolysis of sucrose at 35.0°C, given that k=1.0 mL mol⁻¹ s⁻¹ at 37.0°C (normal body temperature), and the activation energy of the reaction is 108 kJ mol⁻¹.

SID: _____

7) **(15 pts)** Certain bacteria use the enzyme penicillinase to decompose penicillin and render it inactive. The Michaelis–Menten constants for this enzyme and substrate are:

$$K_{\rm m} = 5.3 \times 10^{-5} \, {\rm mol} \, {\rm L}^{-1}$$

$$k_2 = 2.6 \times 10^3 \text{ s}^{-1}$$

a) At what substrate concentration will the rate of decomposition be half of the maximum rate? Must show all work for full credit (10 pts)

b) What is the significance of k₂ in the Michaelis-Menten model of enzyme kinetics (one sentence)? (5 pts)