Name	
SID	

1 (10 pts; 5 each) Briefly rationalize the following observations regarding the cosmic abundance of the elements:

a) Even Z nuclei are more abundant than odd Z nuclei

b) In the lighter elements, those with mass number divisible by 4 are more abundant

Name	
SID	

- 2. (10 pts; 5 each) Write balanced equations that represent the following nuclear reactions:
 - a) Positron emission by $^{22}_{11}Na$

b) Alpha emission by $^{222}_{88}Ra$

3 (10 pts)

One fission reaction that takes place in nuclear reactors is:

 $^{235}_{92}U + {}^{1}_{0}n \rightarrow ~^{139}_{56}Ba + {}^{94}_{36}Kr + 3{}^{1}_{0}n$

Calculate the energy released (in joules) when 5.0 g of uranium-235 undergoes this reaction. Use the following masses: $^{235}_{92}U: 235.04 u$, $^{139}_{56}Ba: 138.91 u$, $^{94}_{36}Kr: 93.93 u$, $^{1}_{0}n: 1.0087u$

Name	
SID	

4 (10 pts)

A 250. mg sample of carbon from a piece of cloth excavated from an ancient tomb in Nubia undergoes 1.50×10^3 disintegrations in 10.0 h. If a current 1.00 g sample of carbon shows 921 disintegrations per hour, how old is the cloth?

Name ______ SID _____

5 (10 pts).

Calculate the energy released per gram of starting material in the fusion reaction represented by the following equation:

 $D + D \rightarrow {}^{3}He + n$

Use the following masses: D: 2.0141 u, ³He: 3.0160 u

Name			
SID _	 	 	

6 (10 PTS)

Consider the fuel cell that accomplishes the overall reaction:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$

If the fuel cell operates with 60% efficiency, calculate the amount of electrical work generated per gram of water produced. The gas pressures are constant at 1 atm and the temperature is 25° C.

Name ______ SID _____

7 (15 PTS). Using the given standard reduction potentials, determine the standard potential for the reaction:

 $Ce^{4+} + 4e^- \rightarrow Ce(s)$

Name		
SID		
JID	 	

8 (15 pts).

Determine the potential for the following cell @ 25° C

 $Cr(s)|Cr^{3+}(0.37 M)||Pb^{2+}(9.5x10^{-3}M)|Pb(s)|$

Name ______ SID _____

9 (10 pts).

The potential for the cell @ 25° C

 $Zn(s)|Zn^{2+}(?)||Pb^{2+}(0.10 M)|Pb(s)$

is +0.661 V. What is the concentration of Zn²⁺ ions??