IEOR 165 - Midterm Exam Solutions Spring 2021

Instructions:

- Open notes/homeworks/solutions only
- Calculators are allowed (graphing calculators are okay)
- Excel/R/Python/similar softwares are not allowed
- If steps/works are not shown, then points will be deducted
- Communicating with anyone other than GSI/instructor is not allowed
- Exam period starts Wednesday, March 17 at 2PM (Pacific Time) and ends Thursday, March 18 at 2PM (Pacific Time)
- Once you start the exam, you will have $\mathbf{1 . 5}$ hours to complete the exam
- There are extra office hours during which you can get clarification about the exam questions

Name: \qquad
Student ID: \qquad

1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$

1. We are growing beans in science class and would like to study the effect of fertilizer amount (F) on the height of the bean stalks (H) after a month of time. The experiment was performed on three bean stalks with different values of F. The data collected is shown below.

H	F
1.4	10
2.2	15
5.0	30
6.5	45
8.0	50
8.2	60

Consider the linear model $H_{i}=\beta F_{i}+\epsilon_{i}$ where i denotes the $i^{\text {th }}$ data. Assume that the noises $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are iid with known σ^{2}, and that the prior distribution of the coefficient is Gaussian: $\beta \sim \mathcal{N}(0,1 /(2 \lambda))$. Suppose $\sigma^{2}=0.3$ and $\lambda=2$. Find the estimate for β using the Maximum A Posteriori (MAP) method. (10 points)

Solution: The MAP estimator is the solution to the following optimization problem:

$$
\begin{equation*}
\underset{\beta}{\arg \max } \exp \left(\sum_{i=1}^{6}-\left(H_{i}-\beta F_{i}\right)^{2} /\left(2 \sigma^{2}\right)\right) \cdot \exp \left(-\lambda \beta^{2}\right) \tag{1}
\end{equation*}
$$

Taking the \log and negating the problem, we arrive at an equivalent minimization problem:

$$
\begin{equation*}
\underset{\beta}{\arg \min } \sum_{i=1}^{6}\left(H_{i}-\beta F_{i}\right)^{2}+2 \lambda \sigma^{2} \beta^{2} \tag{2}
\end{equation*}
$$

Take the derivative with respect to β and set it to zero.

$$
\begin{equation*}
\left(\sum_{i=1}^{6} 2 F_{i}^{2}+4 \lambda \sigma^{2}\right) \beta-\sum_{i=1}^{6} 2 H_{i} F_{i}=0 \tag{3}
\end{equation*}
$$

Solving for β we get:

$$
\begin{equation*}
\hat{\beta}=\left(\sum_{i=1}^{6} H_{i} F_{i}\right) /\left(\sum_{i=1}^{6} F_{i}^{2}+2 \lambda \sigma^{2}\right)=0.1477 \tag{4}
\end{equation*}
$$

2. Suppose that we are flipping a 'tilted' coin that shows a head with probability p and a tail with probability $1-p$. Let X be a random variable that counts the number of heads after flipping the coin n times. Then, $X \sim \operatorname{Binomial}(n, p)$ with mean $n p$ and variance $n p(1-p)$. After repeating the experiment five times (each experiment consists of n coin flips), we observe X_{1}, \ldots, X_{5} to be equal to $15,20,18,22,20$. Use the method of moments to estimate the parameters n and p. (10 points)

Solution: Let us first express the first and second moments as a function of the distribution parameters.

$$
\begin{align*}
\mu_{1}=\mathbb{E}[X] & =n p \tag{5}\\
\mu_{2}=\mathbb{E}\left[X^{2}\right] & =\sigma^{2}+\mu_{1}^{2}=n p(1-p)+n^{2} p^{2} \tag{6}
\end{align*}
$$

To invert these functions, note that substituting the equation for μ_{1} into the equation for μ_{2} gives

$$
\begin{equation*}
\mu_{2}=\mu_{1}(1-p)+\mu_{1}^{2} \quad \Rightarrow \quad p=\frac{\mu_{1}-\mu_{2}+\mu_{1}^{2}}{\mu_{1}} \tag{7}
\end{equation*}
$$

Substituting this equation for μ_{1} gives

$$
\begin{equation*}
\mu_{1}=n \cdot \frac{\mu_{1}-\mu_{2}+\mu_{1}^{2}}{\mu_{1}} \Rightarrow n=\frac{\mu_{1}^{2}}{\mu_{1}-\mu_{2}+\mu_{1}^{2}} \tag{8}
\end{equation*}
$$

An estimator of the first and second moments are

$$
\begin{align*}
& \hat{\mu_{1}}=\frac{1}{5} \sum_{i=1}^{5} X_{i}=\frac{1}{5}(15+20+18+22+20)=19 \tag{9}\\
& \hat{\mu_{2}}=\frac{1}{5} \sum_{i=1}^{5} X_{i}^{2}=\frac{1}{5}\left(15^{2}+20^{2}+18^{2}+22^{2}+20^{2}\right)=366.6 \tag{10}
\end{align*}
$$

Plugging these values into the equations for n and p, we get

$$
\begin{align*}
& \hat{n}=\frac{19^{2}}{19-366.6+19^{2}}=26.94 \simeq 27 \tag{11}\\
& \hat{p}=\frac{19-366.6+19^{2}}{19}=0.7053 \simeq 0.7 \tag{12}
\end{align*}
$$

3. Let $a>0, \theta>0$ and X_{1}, \ldots, X_{n} be iid random variables from the probability distribution function

$$
f_{a ; \theta}(x)=\frac{a-1}{\theta^{a-1}} \cdot x^{a-2}, \quad 0<x<\theta
$$

The first and second moments of the above distribution is

$$
\begin{equation*}
\mathbb{E}[X]=\frac{a-1}{a} \theta, \quad \mathbb{E}\left[X^{2}\right]=\frac{(a-1) \cdot \theta^{2}}{a+1} \tag{13}
\end{equation*}
$$

Use the method of moments to derive an estimator of a and θ. (10 points)

Solution: Let $\mu_{1}=\mathbb{E}[X], \mu_{2}=\mathbb{E}\left[X^{2}\right]$. To invert the functions, note that substituting the equation for μ_{1} into the equation for μ_{2} gives

$$
\begin{equation*}
\mu_{2}=\frac{a-1}{a+1}\left(\frac{a}{a-1}\right)^{2} \mu_{1}^{2} \tag{14}
\end{equation*}
$$

Solving this equation for a, we get

$$
\begin{gather*}
a=\sqrt{\frac{\mu_{2}}{\mu_{2}-\mu_{1}^{2}}} \tag{15}\\
\theta=\frac{a}{a-1} \mu_{1}=\frac{\mu_{1} \cdot \sqrt{\frac{\mu_{2}}{\mu_{2}-\mu_{1}^{2}}}}{\sqrt{\frac{\mu_{2}}{\mu_{2}-\mu_{1}^{2}}}-1} . \tag{16}
\end{gather*}
$$

Finally, simply plug in the sample estimates for μ_{1} and μ_{2},

$$
\begin{gather*}
\hat{\mu_{1}}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{17}\\
\hat{\mu_{2}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} . \tag{18}\\
\hat{a}=\sqrt{\frac{\hat{\mu}_{2}}{\hat{\hat{\mu}_{2}-\hat{\mu}_{1}^{2}}}, \quad \hat{\theta}=\frac{\hat{\mu}_{1} \cdot \sqrt{\frac{\hat{\mu}_{2}}{\hat{\mu_{2}}}-\hat{\mu}_{1}^{2}}}{\sqrt{\frac{\hat{\mu}_{2}}{\hat{\mu_{2}}-\hat{\mu}_{1}^{2}}}-1}} . \tag{19}
\end{gather*}
$$

4. (a) Suppose x_{1}, \ldots, x_{n} are iid samples from a distribution with density

$$
f_{\theta}(x)=\frac{\theta}{x^{2}}, \quad 0<\theta \leq x
$$

Find the maximum likelihood estimator (MLE) of θ. (5 points)
(b) Suppose y_{1}, \ldots, y_{n} are iid samples from a distribution with density

$$
f_{\theta}(y)=\frac{2}{\theta} \cdot y \cdot \exp \left\{-\frac{y^{2}}{\theta}\right\}, \quad y>0, \quad \theta>0
$$

Find the maximum likelihood estimator (MLE) of θ. (5 points)

Solution:

(a)

$$
\begin{aligned}
L(\theta) & = \begin{cases}\prod_{i=1}^{n} \frac{\theta}{x_{i}^{2}}, & 0<\theta \leq x_{i} \text { for all } i \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{\theta^{n}}{\prod_{i=1}^{x_{i}^{2}},} & 0<\theta \leq \min \left\{x_{1}, \ldots, x_{n}\right\} \\
0, & \text { otherwise }\end{cases} \\
\ln L(\theta) & =n \ln \theta-2 \sum_{i=1}^{n} \ln x_{i} \\
\frac{d}{d \theta} \ln L(\theta) & =\frac{n}{\theta}>0
\end{aligned}
$$

Since the log-likelihood is strictly increasing in θ (where the likelihood is not zero), the MLE is the largest allowable value of θ in this region, i.e., $\hat{\theta}_{\text {MLE }}=\min \left\{x_{i}\right\}$.
(b)

$$
\begin{aligned}
L(\theta) & =\left(\frac{2}{\theta}\right)^{n}\left(\prod_{i=1}^{n} y_{i}\right) \exp \left\{-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}^{2}\right\} \\
\ln L(\theta) & =n(\ln 2-\ln \theta)+\sum_{i=1}^{n} \ln y_{i}-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}^{2} \\
\frac{d}{d \theta} \ln L(\theta) & =-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}^{2} \\
\hat{\theta}_{\mathrm{MLE}} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}
\end{aligned}
$$

5. We propose the following model for the time it takes to perform a simple task as a function of the number of times the task has been practiced

$$
T \approx t s^{-n}
$$

where T is the time, n is the number of times the task has been practiced, and t and s are parameters depending on the task and individual. Given the following data set

$$
\begin{array}{c|cccccc}
T & 22.4 & 21.3 & 19.7 & 15.6 & 15.2 & 13.9 \\
\hline n & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

(a) Estimate t and s. (7 points)
(b) Estimate the time it takes to perform the task after 6 practices. (3 points)

Solution: Using least squares,

$$
\begin{aligned}
\log T & =\log t-n \log s=\log t-\log s \cdot n \\
\widehat{\log t} & =3.1342, \widehat{\log s}=0.1038 \\
\hat{t} & =22.970, \hat{s}=1.109 \\
\hat{T}(6) & =22.970 \cdot(1.109)^{-6}=12.325
\end{aligned}
$$

