IEOR 165 - Midterm Exam Spring 2021

Instructions:

- Open notes/homeworks/solutions only
- Calculators are allowed (graphing calculators are okay)
- Excel/R/Python/similar softwares are not allowed
- If steps/works are not shown, then points will be deducted
- Communicating with anyone other than GSI/instructor is not allowed
- Exam period starts Wednesday, March 17 at 2PM (Pacific Time) and ends Thursday, March 18 at 2PM (Pacific Time)
- Once you start the exam, you will have $\mathbf{1 . 5}$ hours to complete the exam
- There are extra office hours during which you can get clarification about the exam questions

Name: \qquad
Student ID: \qquad

1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$

1. We are growing beans in science class and would like to study the effect of fertilizer amount (F) on the height of the bean stalks (H) after a month of time. The experiment was performed on six bean stalks with different values of F. The data collected is shown below.

H	F
1.4	10
2.2	15
5.0	30
6.5	45
8.0	50
8.2	60

Consider the linear model $H_{i}=\beta F_{i}+\epsilon_{i}$ where i denotes the $i^{\text {th }}$ data. Assume that the noises $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are iid with known σ^{2}, and that the prior distribution of the coefficient is Gaussian: $\beta \sim \mathcal{N}(0,1 /(2 \lambda))$. Suppose $\sigma^{2}=0.3$ and $\lambda=2$. Find the estimate for β using the Maximum A Posteriori (MAP) method. (10 points)
2. Suppose that we are flipping a 'tilted' coin that shows a head with probability p and a tail with probability $1-p$. Let X be a random variable that counts the number of heads after flipping the coin n times. Then, $X \sim \operatorname{Binomial}(n, p)$ with mean $n p$ and variance $n p(1-p)$. After repeating the experiment five times (each experiment consists of n coin flips), we observe X_{1}, \ldots, X_{5} to be equal to $15,20,18,22,20$. Use the method of moments to estimate the parameters n and p. (10 points)
3. Let $a>0, \theta>0$ and X_{1}, \ldots, X_{n} be iid random variables from the probability distribution function

$$
f_{a ; \theta}(x)=\frac{a-1}{\theta^{a-1}} \cdot x^{a-2}, \quad 0<x<\theta
$$

The first and second moments of the above distribution is

$$
\mathbb{E}[X]=\frac{a-1}{a} \theta, \quad \mathbb{E}\left[X^{2}\right]=\frac{(a-1) \cdot \theta^{2}}{a+1}
$$

Use the method of moments to derive an estimator of a and θ. (10 points)
4. (a) Suppose x_{1}, \ldots, x_{n} are iid samples from a distribution with density

$$
f_{\theta}(x)=\frac{\theta}{x^{2}}, \quad 0<\theta \leq x
$$

Find the maximum likelihood estimator (MLE) of θ. (5 points)
(b) Suppose y_{1}, \ldots, y_{n} are iid samples from a distribution with density

$$
f_{\theta}(y)=\frac{2}{\theta} \cdot y \cdot \exp \left\{-\frac{y^{2}}{\theta}\right\}, \quad y>0, \quad \theta>0
$$

Find the maximum likelihood estimator (MLE) of θ. (5 points)
5. We propose the following model for the time it takes to perform a simple task as a function of the number of times the task has been practiced

$$
T \approx t s^{-n}
$$

where T is the time, n is the number of times the task has been practiced, and t and s are parameters depending on the task and individual. Given the following data set

T	22.4	21.3	19.7	15.6	15.2	13.9
n	0	1	2	3	4	5

(a) Estimate t and s. (7 points)
(b) Estimate the time it takes to perform the task after 6 practices. (3 points)

