
Physics 7C Midterm Solutions

Problem 1:

(a) 5 points: Place the object at infinity and the image at W −∆x, both relative to the eye’s lens.
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(b) 4 points: The eye’s lens refracts the light rays too much. Thus, the lens on the glasses must be
diverging, so counter the over-convergence caused by the eyes. Nearsighted people need diverging lenses.

(c) 12 points: An object at infinity in front of the glasses lens produces a virtual image from the glasses
lens. This image, which is at a distance |f1| in front of the glasses lens (on the same side as the object), is
the object of the eye lens. This virtual object is L+ |f1| in front of the eye lens. A real image of that virtual
object is produced on the retina by the eye lens, i.e., a distance W on the other side of the eye lens. Thus,
using the lens equation of the eye lens,
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Note that f1 is negative, because the glasses lens is diverging.

(d) 4 points: Diverging lenses have negative focal lengths, which means their image distances are always
negative if the object distance is positive. That is, the image of a diverging lens is on the same side as a
positive real object, even though the actual rays refract through the lens instead of reflect back. Thus, Maria
sees a virtual image.

Problem 2:

(a) 15 points: First, apply Snell’s law between two adjacent layers. Then Taylor expand sin (θ + ∆θ)
around θ.

n sin θ = (n+ ∆n) sin (θ + ∆θ) (6)

n sin θ = (n+ ∆n)[sin θ + (cos θ)∆θ + . . .]) (7)

n sin θ = n sin θ + ∆n sin θ + n∆θ cos θ (8)

We’ve only kept terms up to linear order in the small quantities ∆n and ∆θ. After simplifying further, we
find

0 = ∆n sin θ + n∆θ cos θ (9)
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Now we recognize from the chain rule that (cos θ)∆θ = ∆(sin θ). We can substitute this into our equation
and recognize the product rule.

0 = (∆n) sin θ + n∆(sin θ) (10)

0 = ∆(n sin θ) (11)

Thus, the familiar n sin θ is our conserved quantity between any pair of thin layers, no matter how far apart
they are.

(b) 5 points: Recall that n(0) = 1. The relationship between the top and bottom of the atmosphere can
be found by applying the conserved quantity.

n(D) sin(θ(D)) = sin(θ(0)) (12)

θ(D) = arcsin
(
e−D/∆d sin(θ(0))

)
(13)

(c) 5 points: In the limit ∆d � D, we have e−D/∆d → 0. Since arcsin(0) = 0, we find θ(D) = 0. The
sketch of the ray enters the atmosphere at π/4, then curves through the atmosphere until it exits at normal
incidence.

Problem 3:

(a) 4 points: Recall that for electromagnetic waves with fields E and B = E/c , the energy density stored
in the fields is given by

utot = uE + uB =
1

2
ε0E

2 +
1

2µ0
B2 = ε0E

2 (14)

Thus, for waves traveling at speed c, the power flux (energy per area per second) is

S = c · utot = cε0E
2. (15)

Without any loss of generality, let’s assume the detector is located at position x = 0, so that, at the
detector, we have

E1 = E0 cos(−ωt) = E0 cos(ωt) (16)

Then, the power flux at the detector is
S = cε0E

2
1 cos2(ωt) (17)

The intensity I1 is then given by the average of the power flux over a period of the wave:

I1 = 〈S〉 = cε0E
2
0 · 〈cos2(ωt)〉 (18)

where 〈·〉 denotes an average over the period. We can either just remember that the average of cos2 is 1
2 , or

we can show explicitly:
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where x = ωt⇒ dt = dx/ω. Using cos2(x) = (1 + cos(2x))/2, we obtain
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In any case, we have that

I1 =
1

2
cε0E

2
0 (21)
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(b) 7 points: If both waves are present and φ = 0, then at the detector (x = 0) we have

Etot = E0ŷ cos(−ωt) + E0ŷ cos(−ωt) = 2E0ŷ cos(−ωt)
= 2E0ŷ cos(ωt) (22)

and hence

Itot(φ = 0) =
1

2
cε0(2E0)2 = 4I1 (23)

Itot(0)

I1
= 4 (24)

(c) 6 points: If φ = π, then at x = 0 the total field is

Etot = E0ŷ cos(−ωt) + E0ŷ cos(−ωt+ π)

= E0ŷ cos(−ωt)− E0ŷ cos(−ωt)
= 0 (25)

where in the second line we have used the fact that cos(x+ π) = − cos(x), for any x. Therefore,

Itot(π)

I1
= 0 (26)

(d) 8 points: Recall the identity

cos(x) + cos(y) = 2 cos
(x+ y

2

)
cos
(x− y

2

)
(27)

Using this, with φ = π
3 , the total electric field at the detector becomes

Etot = E0ŷ cos(−ωt) + E0ŷ cos(−ωt+ π/3)

= 2E0ŷ cos(−ωt+ π/6) cos(π/6)

=
√

3E0ŷ cos(ωt− π/6) (28)

Here, we used cos (π/6) =
√

3/2. Therefore, the intensity is

I(π/3) = cε0(
√

3E0)2〈cos2(ωt+ π/6)〉 = 3cε0E
2
0 ·

1

2
= 3I1 (29)

where we have used the fact that adding a constant to the argument of the cosine function doesn’t change
its average value. Therefore,

Itot(π/3)

I1
= 3 (30)

Alternatively, we note that

cos(−ωt) + cos (−ωt+ π/3) = Re
[
e−iωt + ei(−ωt+π/3)

]
(31)

= Re
[
e−iωt

(
1 + eiπ/3

)]
(32)

Then factor out eiπ/6 to get the sum of eiπ/6 + e−iπ/6, which is 2 cos(π/6), etc.

Problem 4:

(a) 7 points: Let us label the event of the rocket launch as event A, and the event of the booster ejection
as event B. Then A and B occur at the same place in the Rocket frame. Thus, the time between the events
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in the rocket frame, τ1, is the proper time between the events. Therefore, the dilated time measured by the
earthbound observer is given via the time dilation equation:

t1 = γτ1 =
1√

1− β2
τ1 (33)

Since the rocket travels at constant speed βc with respect to the Earth, the (Earth) distance traveled in time
t1 is

L1 = βc · t1 =
βc√

1− β2
τ1 (34)

(b) 11 points: The rocket speed, as measured on Earth, is v = βc. Label the booster speed, as measured
on Earth by u, and its speed as measured by the rocket (given) as u′ = −β′c. We use the minus sign because
the booster is moving towards the Earth. Then, from the velocity addition formula,

u′ =
u− v
1− uv

c2
=⇒ u =

u′ + v

1 + u′v
c2

(35)

we find that the speed of the booster in the Earth frame is

u =
−β′c+ βc

1− β′β
=
c(β − β′)
1− ββ′

(36)

Then, since the booster is ejected a distance L1 from the Earth, it takes an amount of (Earth) time

∆t =
L1

|u|
=
[ βc√

1− β2
τ1

]
·
[ 1− ββ′

c(β′ − β)

]
(37)

to reach the Earth. Using the expression for t1 from part (a), the total time of the journey is

t2 = t1 + ∆t =
1√

1− β2
τ1 +

[ βc√
1− β2

τ1

]
·
[ 1− ββ′

c(β′ − β)

]
=

τ1√
1− β2

[c(β′ − β)

c(β′ − β)
+
βc(1− ββ′)
c(β′ − β)

]
=

τ1√
1− β2

[β′ − β2β′

β′ − β

]
=

τ1β
′√

1− β2

1− β2

β′ − β

= τ1
β′

β′ − β
√

1− β2 (38)

(c) 7 points: Label again the rocket-launch by event A, and the booster arriving at Earth by event C.
Then A and C occur at the same place in the Earth frame. Thus, the Earth time between the two events,
t2 is the proper time between the two events. To find the dilated time in the rocket frame moving at speed
βc, we use the time dilation equation:

τ2 = γt2 =
1√

1− β2
· τ1

β′

β′ − β
√

1− β2

= τ1 ·
β′

β′ − β
(39)

Note: In this case we used τ2 = γt2, whereas in part (a) we used t1 = γτ1.
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