Physics 7C Midterm Solutions

Problem 1:

(a) 5 points: Place the object at infinity and the image at $W-\Delta x$, both relative to the eye's lens.

$$
\begin{align*}
\frac{1}{\infty}+\frac{1}{W-\Delta x} & =\frac{1}{f_{0}} \tag{1}\\
f_{0} & =W-\Delta x \tag{2}
\end{align*}
$$

(b) 4 points: The eye's lens refracts the light rays too much. Thus, the lens on the glasses must be diverging, so counter the over-convergence caused by the eyes. Nearsighted people need diverging lenses.
(c) 12 points: An object at infinity in front of the glasses lens produces a virtual image from the glasses lens. This image, which is at a distance $\left|f_{1}\right|$ in front of the glasses lens (on the same side as the object), is the object of the eye lens. This virtual object is $L+\left|f_{1}\right|$ in front of the eye lens. A real image of that virtual object is produced on the retina by the eye lens, i.e., a distance W on the other side of the eye lens. Thus, using the lens equation of the eye lens,

$$
\begin{align*}
\frac{1}{L+\left|f_{1}\right|}+\frac{1}{W} & =\frac{1}{f_{0}}=\frac{1}{W-\Delta x} \tag{3}\\
\left|f_{1}\right| & =W\left(\frac{W}{\Delta x}-1\right)-L \tag{4}\\
f_{1} & =L-W\left(\frac{W}{\Delta x}-1\right) \tag{5}
\end{align*}
$$

Note that f_{1} is negative, because the glasses lens is diverging.
(d) 4 points: Diverging lenses have negative focal lengths, which means their image distances are always negative if the object distance is positive. That is, the image of a diverging lens is on the same side as a positive real object, even though the actual rays refract through the lens instead of reflect back. Thus, Maria sees a virtual image.

Problem 2:

(a) 15 points: First, apply Snell's law between two adjacent layers. Then Taylor expand $\sin (\theta+\Delta \theta)$ around θ.

$$
\begin{align*}
& n \sin \theta=(n+\Delta n) \sin (\theta+\Delta \theta) \tag{6}\\
& n \sin \theta=(n+\Delta n)[\sin \theta+(\cos \theta) \Delta \theta+\ldots]) \tag{7}\\
& n \sin \theta=n \sin \theta+\Delta n \sin \theta+n \Delta \theta \cos \theta \tag{8}
\end{align*}
$$

We've only kept terms up to linear order in the small quantities Δn and $\Delta \theta$. After simplifying further, we find

$$
\begin{equation*}
0=\Delta n \sin \theta+n \Delta \theta \cos \theta \tag{9}
\end{equation*}
$$

Now we recognize from the chain rule that $(\cos \theta) \Delta \theta=\Delta(\sin \theta)$. We can substitute this into our equation and recognize the product rule.

$$
\begin{align*}
& 0=(\Delta n) \sin \theta+n \Delta(\sin \theta) \tag{10}\\
& 0=\Delta(n \sin \theta) \tag{11}
\end{align*}
$$

Thus, the familiar $n \sin \theta$ is our conserved quantity between any pair of thin layers, no matter how far apart they are.
(b) 5 points: Recall that $n(0)=1$. The relationship between the top and bottom of the atmosphere can be found by applying the conserved quantity.

$$
\begin{array}{r}
n(D) \sin (\theta(D))=\sin (\theta(0)) \\
\theta(D)=\arcsin \left(e^{-D / \Delta d} \sin (\theta(0))\right) \tag{13}
\end{array}
$$

(c) 5 points: In the limit $\Delta d \ll D$, we have $e^{-D / \Delta d} \rightarrow 0$. Since $\arcsin (0)=0$, we find $\theta(D)=0$. The sketch of the ray enters the atmosphere at $\pi / 4$, then curves through the atmosphere until it exits at normal incidence.

Problem 3:

(a) 4 points: Recall that for electromagnetic waves with fields \mathbf{E} and $\mathbf{B}=\mathbf{E} / c$, the energy density stored in the fields is given by

$$
\begin{equation*}
u_{t o t}=u_{E}+u_{B}=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}=\epsilon_{0} E^{2} \tag{14}
\end{equation*}
$$

Thus, for waves traveling at speed c, the power flux (energy per area per second) is

$$
\begin{equation*}
S=c \cdot u_{t o t}=c \epsilon_{0} E^{2} . \tag{15}
\end{equation*}
$$

Without any loss of generality, let's assume the detector is located at position $x=0$, so that, at the detector, we have

$$
\begin{equation*}
\mathbf{E}_{1}=E_{0} \cos (-\omega t)=E_{0} \cos (\omega t) \tag{16}
\end{equation*}
$$

Then, the power flux at the detector is

$$
\begin{equation*}
S=c \epsilon_{0} E_{1}^{2} \cos ^{2}(\omega t) \tag{17}
\end{equation*}
$$

The intensity I_{1} is then given by the average of the power flux over a period of the wave:

$$
\begin{equation*}
I_{1}=\langle S\rangle=c \epsilon_{0} E_{0}^{2} \cdot\left\langle\cos ^{2}(\omega t)\right\rangle \tag{18}
\end{equation*}
$$

where $\langle\cdot\rangle$ denotes an average over the period. We can either just remember that the average of $\cos ^{2}$ is $\frac{1}{2}$, or we can show explicitly:

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} \cos ^{2}(\omega t) d t=\frac{2 \pi}{\omega} \int_{0}^{2 \pi / \omega} \cos ^{2}(\omega t) d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2} x d x \tag{19}
\end{equation*}
$$

where $x=\omega t \Rightarrow d t=d x / \omega$. Using $\cos ^{2}(x)=(1+\cos (2 x)) / 2$, we obtain

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2}(1+\cos (2 x)) d x=\left.\frac{1}{2 \pi} \cdot \frac{1}{2} \cdot x\right|_{0} ^{2 \pi}+\left.\frac{1}{2 \pi} \cdot \frac{1}{2} \cdot \sin (2 x)\right|_{0} ^{2 \pi}=\frac{1}{2} \tag{20}
\end{equation*}
$$

In any case, we have that

$$
\begin{equation*}
I_{1}=\frac{1}{2} c \epsilon_{0} E_{0}^{2} \tag{21}
\end{equation*}
$$

(b) 7 points: If both waves are present and $\phi=0$, then at the detector $(x=0)$ we have

$$
\begin{align*}
\mathbf{E}_{t o t} & =E_{0} \hat{\mathbf{y}} \cos (-\omega t)+E_{0} \hat{\mathbf{y}} \cos (-\omega t)=2 E_{0} \hat{\mathbf{y}} \cos (-\omega t) \\
& =2 E_{0} \hat{\mathbf{y}} \cos (\omega t) \tag{22}
\end{align*}
$$

and hence

$$
\begin{gather*}
I_{t o t}(\phi=0)=\frac{1}{2} c \epsilon_{0}\left(2 E_{0}\right)^{2}=4 I_{1} \tag{23}\\
\frac{I_{t o t}(0)}{I_{1}}=4 \tag{24}
\end{gather*}
$$

(c) 6 points: If $\phi=\pi$, then at $x=0$ the total field is

$$
\begin{align*}
\mathbf{E}_{t o t} & =E_{0} \hat{\mathbf{y}} \cos (-\omega t)+E_{0} \hat{\mathbf{y}} \cos (-\omega t+\pi) \\
& =E_{0} \hat{\mathbf{y}} \cos (-\omega t)-E_{0} \hat{\mathbf{y}} \cos (-\omega t) \\
& =0 \tag{25}
\end{align*}
$$

where in the second line we have used the fact that $\cos (x+\pi)=-\cos (x)$, for any x. Therefore,

$$
\begin{equation*}
\frac{I_{t o t}(\pi)}{I_{1}}=0 \tag{26}
\end{equation*}
$$

(d) 8 points: Recall the identity

$$
\begin{equation*}
\cos (x)+\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \tag{27}
\end{equation*}
$$

Using this, with $\phi=\frac{\pi}{3}$, the total electric field at the detector becomes

$$
\begin{align*}
\mathbf{E}_{t o t} & =E_{0} \hat{\mathbf{y}} \cos (-\omega t)+E_{0} \hat{\mathbf{y}} \cos (-\omega t+\pi / 3) \\
& =2 E_{0} \hat{\mathbf{y}} \cos (-\omega t+\pi / 6) \cos (\pi / 6) \\
& =\sqrt{3} E_{0} \hat{\mathbf{y}} \cos (\omega t-\pi / 6) \tag{28}
\end{align*}
$$

Here, we used $\cos (\pi / 6)=\sqrt{3} / 2$. Therefore, the intensity is

$$
\begin{equation*}
I(\pi / 3)=c \epsilon_{0}\left(\sqrt{3} E_{0}\right)^{2}\left\langle\cos ^{2}(\omega t+\pi / 6)\right\rangle=3 c \epsilon_{0} E_{0}^{2} \cdot \frac{1}{2}=3 I_{1} \tag{29}
\end{equation*}
$$

where we have used the fact that adding a constant to the argument of the cosine function doesn't change its average value. Therefore,

$$
\begin{equation*}
\frac{I_{t o t}(\pi / 3)}{I_{1}}=3 \tag{30}
\end{equation*}
$$

Alternatively, we note that

$$
\begin{align*}
\cos (-\omega t)+\cos (-\omega t+\pi / 3) & =\operatorname{Re}\left[e^{-i \omega t}+e^{i(-\omega t+\pi / 3)}\right] \tag{31}\\
& =\operatorname{Re}\left[e^{-i \omega t}\left(1+e^{i \pi / 3}\right)\right] \tag{32}
\end{align*}
$$

Then factor out $e^{i \pi / 6}$ to get the sum of $e^{i \pi / 6}+e^{-i \pi / 6}$, which is $2 \cos (\pi / 6)$, etc.

Problem 4:

(a) 7 points: Let us label the event of the rocket launch as event A, and the event of the booster ejection as event B. Then A and B occur at the same place in the Rocket frame. Thus, the time between the events
in the rocket frame, τ_{1}, is the proper time between the events. Therefore, the dilated time measured by the earthbound observer is given via the time dilation equation:

$$
\begin{equation*}
t_{1}=\gamma \tau_{1}=\frac{1}{\sqrt{1-\beta^{2}}} \tau_{1} \tag{33}
\end{equation*}
$$

Since the rocket travels at constant speed βc with respect to the Earth, the (Earth) distance traveled in time t_{1} is

$$
\begin{equation*}
L_{1}=\beta c \cdot t_{1}=\frac{\beta c}{\sqrt{1-\beta^{2}}} \tau_{1} \tag{34}
\end{equation*}
$$

(b) 11 points: The rocket speed, as measured on Earth, is $v=\beta c$. Label the booster speed, as measured on Earth by u, and its speed as measured by the rocket (given) as $u^{\prime}=-\beta^{\prime} c$. We use the minus sign because the booster is moving towards the Earth. Then, from the velocity addition formula,

$$
\begin{equation*}
u^{\prime}=\frac{u-v}{1-\frac{u v}{c^{2}}} \Longrightarrow u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}} \tag{35}
\end{equation*}
$$

we find that the speed of the booster in the Earth frame is

$$
\begin{equation*}
u=\frac{-\beta^{\prime} c+\beta c}{1-\beta^{\prime} \beta}=\frac{c\left(\beta-\beta^{\prime}\right)}{1-\beta \beta^{\prime}} \tag{36}
\end{equation*}
$$

Then, since the booster is ejected a distance L_{1} from the Earth, it takes an amount of (Earth) time

$$
\begin{equation*}
\Delta t=\frac{L_{1}}{|u|}=\left[\frac{\beta c}{\sqrt{1-\beta^{2}}} \tau_{1}\right] \cdot\left[\frac{1-\beta \beta^{\prime}}{c\left(\beta^{\prime}-\beta\right)}\right] \tag{37}
\end{equation*}
$$

to reach the Earth. Using the expression for t_{1} from part (a), the total time of the journey is

$$
\begin{align*}
t_{2}=t_{1}+\Delta t & =\frac{1}{\sqrt{1-\beta^{2}}} \tau_{1}+\left[\frac{\beta c}{\sqrt{1-\beta^{2}}} \tau_{1}\right] \cdot\left[\frac{1-\beta \beta^{\prime}}{c\left(\beta^{\prime}-\beta\right)}\right] \\
& =\frac{\tau_{1}}{\sqrt{1-\beta^{2}}}\left[\frac{c\left(\beta^{\prime}-\beta\right)}{c\left(\beta^{\prime}-\beta\right)}+\frac{\beta c\left(1-\beta \beta^{\prime}\right)}{c\left(\beta^{\prime}-\beta\right)}\right] \\
& =\frac{\tau_{1}}{\sqrt{1-\beta^{2}}}\left[\frac{\beta^{\prime}-\beta^{2} \beta^{\prime}}{\beta^{\prime}-\beta}\right] \\
& =\frac{\tau_{1} \beta^{\prime}}{\sqrt{1-\beta^{2}}} \frac{1-\beta^{2}}{\beta^{\prime}-\beta} \\
& =\tau_{1} \frac{\beta^{\prime}}{\beta^{\prime}-\beta} \sqrt{1-\beta^{2}} \tag{38}
\end{align*}
$$

(c) 7 points: Label again the rocket-launch by event A, and the booster arriving at Earth by event C. Then A and C occur at the same place in the Earth frame. Thus, the Earth time between the two events, t_{2} is the proper time between the two events. To find the dilated time in the rocket frame moving at speed βc, we use the time dilation equation:

$$
\begin{align*}
\tau_{2} & =\gamma t_{2}=\frac{1}{\sqrt{1-\beta^{2}}} \cdot \tau_{1} \frac{\beta^{\prime}}{\beta^{\prime}-\beta} \sqrt{1-\beta^{2}} \\
& =\tau_{1} \cdot \frac{\beta^{\prime}}{\beta^{\prime}-\beta} \tag{39}
\end{align*}
$$

Note: In this case we used $\tau_{2}=\gamma t_{2}$, whereas in part (a) we used $t_{1}=\gamma \tau_{1}$.

