Chemistry 4B	SP21	Exam II
---------------------	-------------	---------

Name	 	
SID		

1 (10 pts; 5 each) Briefly rationalize the following observations regarding the cosmic abundance of the elements:

a) Even Z nuclei are more abundant than odd Z nuclei

An even number of protons allows for spin pairing, which increases stability.

b) In the lighter elements, those with mass number divisible by 4 are more abundant

The helium nucleus ${}_{2}^{4}He$ is one of the main building blocks in nucleosynthesis. It is produced from hydrogen burning, and subsequent helium burning produces elements with mass number divisible by 4.

- 2. (10 pts; 5 each) Write balanced equations that represent the following nuclear reactions:
 - a) Positron emission by $^{22}_{11}Na$

$$^{22}_{11}Na \rightarrow ^{22}_{10}Ne + ^{0}_{1}e^{+} + v$$

b) Alpha emission by $^{222}_{88}Ra$

$$^{222}_{88}Ra \rightarrow ^{218}_{86}Rn + ^{4}_{2}He$$

Name _____SID ____

3 (10 pts)

One fission reaction that takes place in nuclear reactors is:

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{139}_{56}Ba + ^{94}_{36}Kr + 3^{1}_{0}n$$

Calculate the energy released (in joules) when 5.0 g of uranium-235 undergoes this reaction. Use the following masses:

 $^{235}_{92}U: 235.04\,u$, $^{139}_{56}Ba: 138.91\,u$, $^{94}_{36}Kr: 93.93\,u$, $^{1}_{0}n: 1.0087u$

$$\Delta m = m\binom{139}{56}Ba + m\binom{94}{36}Kr + 2 * m\binom{1}{0}n - m\binom{235}{92}U$$

$$\Delta m = (138.91) + (93.93) + 2(1.0087) - (235.04) = -0.1826 \, u$$

$$\Delta E = \Delta mc^2$$

$$\Delta E = (-0.1826 \, u) * \left(\frac{2.997 x 10^8 m}{s}\right)^2 * \left(\frac{1.6605 x 10^{-27} kg}{u}\right) * 5.0 \, g^{\frac{235}{92}} U * \left(\frac{1 \, mol}{235.05 \, g^{\frac{235}{92}} U}\right) * \left(6.02310^{23} \frac{atoms}{mol}\right) = -3.49 x 10^{11} J$$

 $Energy \ released = +3.49x10^{11}J$

4 (10 pts)

A 250. mg sample of carbon from a piece of cloth excavated from an ancient tomb in Nubia undergoes 1.50×10^3 disintegrations in 10.0 h. If a current 1.00 g sample of carbon shows 921 disintegrations per hour, how old is the cloth?

$$A = A_0 e^{-kt}$$

$$\ln\left(\frac{A}{A_0}\right) = -kt$$

$$t = \frac{\ln\left(\frac{A_0}{A}\right)}{k} = \frac{t_{1/2} * \ln\left(\frac{A_0}{A}\right)}{\ln(2)}$$

$$A = \frac{1.50x10^3 dis.}{10.0 h} * \frac{1 h}{3600 s} * \frac{1}{0.250 g} = 0.1667 \frac{Bq}{g}$$

$$A_0 = \frac{921 dis.}{h} * \frac{1 h}{3600 s} * \frac{1}{1.00 g} = 0.2558 \frac{Bg}{g}$$

5 (10 pts).

Calculate the energy released per gram of starting material in the fusion reaction represented by the following equation:

$$D + D \rightarrow {}^{3}He + n$$

Use the following masses: $D: 2.0141 \, u$, $^3He: 3.0160 \, u$

$$\Delta m = m(^3He) + m(n) - 2m(D) = (3.0160 u) + (1.00866) - 2(2.0141) = -0.00354 u$$

$$\Delta E = -0.00354 \, u * \left(\frac{2.997 \times 10^8 m}{s}\right)^2 * \left(\frac{1.6605 \times 10^{-27} kg}{u}\right) * \frac{1 \, mol \, D}{2.0141 \, g \, D}$$

$$* \frac{6.022 \times 10^{23} \, atoms}{mol} * \frac{1}{2 \, atoms \, D} = -\frac{7.89 \times 10^{10} J}{g \, D}$$

$$\Delta E = +\frac{7.89x10^{10}J}{g\ D} = +\frac{4.92x10^{23}MeV}{g\ D}$$

6 (10 PTS)

Consider the fuel cell that accomplishes the overall reaction:

$$H_2(g) + \frac{1}{2} O_2(g) \to H_2 O(l)$$

If the fuel cell operates with 60% efficiency, calculate the amount of electrical work generated per gram of water produced. The gas pressures are constant at 1 atm and the temperature is 25° C.

$$w_{elec} = -Q\Delta E_{cell}^{o}$$

$$anode: H_{2}(g) + 2H_{2}O(l) \rightarrow 2H_{3}O^{+}(aq) + 2e^{-}: E^{o} = 0.00 V$$

$$Cathode: 2H_{3}O^{+}(aq) + \frac{1}{2}O_{2}(g) + 2e^{-} \rightarrow 3H_{2}O(l) : E^{o} = 1.229 V$$

$$Q = nF = 1 g H_{2}O * \frac{1 mol H_{2}O}{18.015 g H_{2}O} * \frac{2 mol e^{-}}{1 mol H_{2}O} * \frac{96486 C}{mol} = 1.0711x10^{4}C$$

$$w_{elec} = -(1.0711x10^{4}C) * (1.229 V) * \frac{60}{100} = -7898 J$$

$$Work generated = +7.90x10^{3} \frac{J}{a}$$

7 (15 PTS). Using the given standard reduction potentials, determine the standard potential for the reaction:

$$Ce^{4+} + 4e^- \rightarrow Ce(s)$$

(1)
$$Ce^{4+} + e^{-} \rightarrow Ce^{3+} : E_1^o = 1.61 V$$

(2)
$$Ce^{3+} + 3e^{-} \rightarrow Ce(s)$$
: $E_2^o = -2.335 V$

$$\Delta G = -nFE^{o}$$

$$\Delta G_3 = \Delta G_1 + \Delta G_2$$

$$-nFE_3^o = -nFE_1^o - nFE_2^o$$

$$E_3^o = \frac{-nE_1^o - nE_2^o}{n} = \frac{(1 \ mol \ e^-)(1.61 \ V) + (3 \ mol \ e^-)(-2.335 \ V)}{4 \ mol \ e^-} = -1.35 \ V$$

$$E_3^o = -1.35 V$$

8 (15 pts).

Determine the potential for the following cell @ 25° C

$$Cr(s)|Cr^{3+}(0.37 M)||Pb^{2+}(9.5x10^{-3}M)|Pb(s)$$

Anode:
$$2x(Cr(s) \to Cr^{3+}(aq) + 3e^{-}) : E^{o} = -0.74 V$$

Cathode:
$$3x(Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)) : E^{o} = -0.1263$$

Net:
$$2Cr(s) + 3Pb^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Pb(s)$$

$$\Delta E_{cell}^o = E_{cathode}^o - E_{anode}^o = (-0.1263 \, V) + 0.74 \, V = 0.6137 \, V$$

$$\Delta E_{cell} = \Delta E_{cell}^0 - \frac{0.0592}{n} \log \left(\frac{[Cr^{3+}]^2}{[Pb^{2+}]^3} \right) = 0.6137 - \frac{0.0592}{6 \ mol \ e^-} log \frac{[0.37]^2}{[9.5x10^{-3}]^3}$$

$$\Delta E_{cell} = 0.562 V$$

9 (10 pts).

The potential for the cell @ 25° C

$$Zn(s)|Zn^{2+}(?)||Pb^{2+}(0.10 M)|Pb(s)$$

is +0.661 V. What is the concentration of Zn²⁺ ions??

Anode:
$$(Zn(s) \to Zn^{2+}(aq) + 2e^{-})$$
 : $E^{o} = -0.7628 V$
 $Cathode$: $Pb^{2+}(aq) + 2e^{-} \to Pb(s)$: $E^{o} = -0.1263$
 Net : $Zn(s) + Pb^{2+}(aq) \to Pb(s) + Zn^{2+}(aq)$
 $\Delta E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode} = (-0.1263 V) + 0.7628 V = 0.6365 V$
 $E_{cell} = \Delta E^{o}_{cell} - \frac{0.0592}{n} \log \left(\frac{[Zn^{2+}]}{[Pb^{2+}]} \right)$
 $0.661 V = 0.6365 V - \frac{0.0592}{n} \log \left(\frac{[Zn^{2+}]}{[0.10]} \right)$
 $-\frac{2 \ mol \ e^{-} * (0.661 - 0.6365) V}{0.0591} = \log \left(\frac{[Zn^{2+}]}{[0.10]} \right)$
 $0.10 \ M * 10^{-\frac{2 \ mol \ e^{-} * (0.661 - 0.6365) V}{0.0591}} = [Zn^{2+}]$