NAME:

ID \# :

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$	$\# 8$	TOTAL
14								

Instructions:

1 Write your name and student ID number.
2 Read the questions carefully.
3 This exam has 8 questions worth 81 points.
4 Please write your solution clearly.

Problem \# $1(4+4+3+3=14$ points $)$

Explain your answers.

(a) Find eigenvalues (including multiplicity) of the matrix $A=\left[\begin{array}{cc}I_{4} & B \\ 0 & -I_{3}\end{array}\right]$.

Here I_{4} is the 4×4 identity matrix and I_{3} is the 3×3.

Answer:
(b) Compute A^{100} for the matrix $A=\left[\begin{array}{cc}I_{4} & B \\ 0 & -I_{3}\end{array}\right]$.

Answer:
(c) Consider the block diagram shown below.

- Find the value of the gain k so that the free response of the closed loop system exhibits undamped sinusoidal oscillations, i.e. the free response looks like $M \cos (\omega t+\phi)$ where M and ϕ are constants.

$$
k=
$$

- What is the frequency ω of these oscillations in radians/second?

Problem \# $2(4+4+2=10$ points $)$

No partial credit.

(a) Find the natural frequency ω_{n} and damping ξ of the transfer function $H(s)$ with realization Σ.

$$
H(s) \sim \Sigma\left[\begin{array}{cc|c}
0 & 1 & 0 \\
-1 & -1 & 1 \\
\hline 4 & 5 & 6
\end{array}\right]
$$

$\omega_{n}=\quad \xi=$
(b) Find the controllable canonical form realization for $H(s)=\frac{2 s^{3}+3}{s^{3}}$.

(c) Consider two vectors in \mathbb{R}^{2} given by

$$
v=\left[\begin{array}{c}
\alpha \\
1
\end{array}\right], \quad w=\left[\begin{array}{l}
1 \\
\alpha
\end{array}\right]
$$

Find all values of α for which v and w are linearly dependent.
Answer:

Problem \# 3 ($3+3+3=9$ points $)$
Show your work for partial credit.
Consider the plant $P(s)=\frac{1}{s+1}$. Design a controller $C(s)=\frac{K_{1} s+K_{2}}{s+p}$ such that
(a) The feedback system system is stable
(b) The feedback system rejects constant disturbances.
(c) The feedback system is critically damped with a natural frequency of $1 \mathrm{rad} / \mathrm{sec}$.

Problem \# 4 $(2+4+4=10$ points $)$
Show your work for partial credit.

Suppose $H(s)$ is a linear time invariant system.
Its unit step response with zero initial conditions is plotted below.
Find $H(s)$.

$$
H(s)=
$$

Problem \# 5 (4 points)

Consider the closed loop system shown above.
Here $P(s)$ and $K(s)$ are single-input single-output transfer functions.
Assume the feedback system is stable.
Plotted below is the magnitude and phase frequency response of the loop gain $L(s)=P(s) K(s)$. Calculate the DC gain of the closed-loop system from r to y.

No partial credit.

DC gain $=$

Problem 6 ($4+4=8$ points)

Consider the first-order LTI system

$$
C(s)=\frac{10 s+1}{(s+10)}
$$

(a) Sketch the straight-line approximation of the magnitude frequency response plot of $C(s)$ on the graph paper below.

(b) Sketch the straight-line approximation of the phase frequency response plot of $C(s)$ on the graph paper below.

Problem \# 7 (14 points)
Show your work for partial credit.
Find the delay margin for the system with nominal loop gain

$$
L^{o}(s)=\frac{s+\pi / 2}{\sqrt{2} s}
$$

In other words, find the maximum delay $T_{\max }$ for which the feedback system shown below is stable. You answer must be expressed in closed-form. So you have to do this problem by hand, and Matlab won't help.

$T_{\max }=$

Problem \# 8 (12 points)
Match the correct unit step response for each frequency response plot given below.
Correct answers get 3 points. Incorrect answers receive -2 points, so you should not guess.
No explanations are necessary.

$\mathrm{A}=\quad \mathrm{B}=$
\square $\mathrm{D}=$

