
Nick Weaver
Fall 2018

CS 161
Computer Security Midterm 1

Midterm solutions updated October 2020 by CS161 FA20 course staff.

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct
will be reported to the Center for Student Conduct.

Sign your name:

Print your class account login: cs161- and SID:

Name of the person
sitting to your left:

Name of the person
sitting to your right:

You may consult one sheet of paper of notes. You may not consult other notes, textbooks, etc. Calculators,
computers, and other electronic devices are not permitted. We use Gradescope for grading so please write
your answers in the space provided.

If you think a question is ambiguous, please come up to the front of the exam room to the staff. If we agree
that the question is ambiguous we will add clarifying assumptions to the central document projected in the
exam rooms.

You have 110 minutes. There are 11 questions, of varying credit (134 points total). The questions are of
varying difficulty, so avoid spending too long on any one question.

Some of the test may include interesting technical asides as footnotes. You are not responsible for reading
the footnotes.

Do not turn this page until your instructor tells you to do so.

Page 1 of 21

Problem 1 Cryptography True/False (18 points)
Answer the following cryptography questions true or false.

(a) Let Ek be a secure block cipher. True or False: It is impossible to find two messages m and m′

such that m 6= m′ and Ek(m) = Ek(m′), even if the attacker knows k.

True False

Solution: True. A block cipher needs to be a one-to-one function so it can be decrypted. If
there existed m 6= m′ such that Ek(m) = Ek(m′), there would be no way to uniquely decrypt
Ek(m).

(b) Let Ek be a secure block cipher. True or False: It is computationally difficult to find two pairs
(m, k) and (m′, k′) such that m 6= m′, k 6= k′ and Ek(m) = Ek′(m′).

True False

Solution: False. Let k′ 6= k and m′ = Dk′(Ek(m)). With high probability we have m′ 6= m as
desired, and Ek′(m′) = Ek′(Dk′(Ek(m))) = Ek(m).

(c) Let MACk be a secure MAC. True or False: It is computationally difficult to find messages m
and m′ such that m 6= m′ and MACk(m) = MACk(m′), even if the attacker knows k.

True False

Solution: False. MACs don’t make any guarantees about whether two different values might
have the same MAC.

It depends on the MAC: In particular, AES-MAC is secure but does not have this property. You
can have multiple messages all with the same MAC, because you just take the intermediate
values: you mac a message M, and then ”roll back” a single block. HMAC does have this
property however. And this is why HMAC-accept-no-substitutes!

(d) Let H be a cryptographic hash function. True or False: H(M) provides confidentiality for the
message M .

True False

Solution: False. Hashes are deterministic, so an attacker could tell if the same message was
sent twice. Also, an attacker could test a guess at M .

(e) HMAC-DRBG does not have rollback resistance.

True False

Solution: False. Intuitively, the underlying hashes of the HMAC make it hard to revert to a
previous state, since a cryptographic hash is one-way.

(f) Diffie/Hellman is secure in the presence of an active adversary.

Midterm 1 Page 2 of 21 CS 161 – Fa 18

True False

Solution: False. A man-in-the-middle can intercept Alice’s ga and send gm to Bob, and
intercept Bob’s gb and send gm to Alice. Then Alice thinks the shared key is gam and Bob
thinks the shared key is gbm, and since the adversary knows ga, gb, and m, the adversary knows
both secrets.

(g) Properly constructed RSA Signatures provide both integrity and authenticity.

True False

Solution: True. An attacker can’t generate a valid signature without knowing the secret key,
so the attacker can’t modify the message without being detected (integrity), and the attacker
can’t forge a message with a valid signature (authenticity).

(h) El Gamal encryption provides confidentiality but it does not provide integrity or authentication.

True False

Solution: True. El Gamal provides only confidentiality. For example, you can replace cipher-
text (c1, c2) with (c1, 2c2), and the recipient will think the message is 2m instead of m.

(i) In examining a certificate we need to consider how we obtained the certificate as well as the certifi-
cate’s contents and signatures.

True False

Solution: Certificates are signed, so we don’t care where the certificate was obtained, as long
as the signature is valid.

Midterm 1 Page 3 of 21 CS 161 – Fa 18

Problem 2 Potpourri (18 points)

(a) Instead of storing user input on the stack, you decide to create a new section of memory (separate
from code, static, heap, and stack) for storing user input. You also put a 64-bit canary at the top
(largest memory address) of the section. Name one memory-safety vulnerability that this prevents.

Solution: This prevents a simple buffer overflow attack from changing return addresses on the
stack.

(b) Name one memory-safety issue that the scheme from part (a) fails to prevent.

Solution: This does not prevent buffer overflows from overwriting other user input stored in
the section. Format string vulnerabilities can still allow the attacker to read arbitrary parts of
memory. Programmer sloppiness is also a possibility as copying user input into a local variable
stored in the stack (through strcpy etc.) can still cause buffer overflows to overwrite the return
address.

(c) True or False: In a threat detection systems, false negatives can be catastrophic, but false positives
are always harmless.

True False

Solution: False, false positives can take time, money, and other resources to address. False
positives can make a good detector/alarm unusable even if it has a very low false negative rate.

(d) Which of the following are recommended ways to protect a password database? (Select all that
apply.)

Salting Passwords

Encrypting Passwords

Using a Fast Hashing Function

Using a Slow Hashing Function

Solution: Salting passwords prevents a dictionary attack, since the attacker needs to perform
one dictionary attack per user instead of one dictionary attack for the entire database.

Encryptng passwords isn’t recommended because if you store the key with the encrypted pass-
words and you get hacked, then all the passwords are immediately broken.

Using a fast hashing function isn’t recommended because it allows the attacker to perform a
dictionary attack faster. A slow hashing function is better because it makes the dictionary
attack slower.

(e) A heap overflow or use-after-free vulnerability can allow the attacker to overwrite the vtable pointer
of an object (that is, the pointer at the start of a C++ object that points to the actual methods for
the function, basically a pointer to an array of function pointers). Can this bypass stack canaries
without additional information?

Yes No

Solution: There is no stack canary before the vtable pointer, so an attacker can overwrite
the pointer without modifying a stack canary.

Midterm 1 Page 4 of 21 CS 161 – Fa 18

(f) At what rank did Grace Hopper retire?

Lieutenant Colonel

Rear Admiral

Captain

Brigadier General

Solution: This was an attendance question for a group of students who were attending the
Grace Murray Hopper conference, and Nick wanted to make sure that they knew that Admiral
Grace Hopper was an Admiral.

(g) Alice generates a MAC on her homework answers that she stores with her homework answers in a
secret remote server. When she needs to submit her homework, she uses the MAC to check that her
answers have not been tampered with. Only she has the key needed to generate the MAC. Which
of the following apply in this scenario?

Integrity and Confidentiality

Integrity and Authentication

Authentication and Confidentiality

Only Integrity

Solution: MACs provide integrity and authentication. No one else has the key, so an attacker
can’t tamper with Alice’s answers (integrity) or forge answers with a valid MAC (authenticity).

(h) Which of the following attacks can be used against a crypto system? (Select all that apply.)

Side-Channel

Rolling-regression

Chosen-plaintext

Chosen-ciphertext

Rubber-Hose Cryptanalysis

Solution: Side-channel attacks take advantage of faulty implementations that leak information
(e.g. a correct password validates faster than an incorrect password).

Rolling regression is unrelated to cryptography.

Chosen-plaintext and chosen-ciphertext are specific classes of attacks where an attacker finds
a way to encrypt and decrypt arbitrary messages, respectively.

Rubber-hose cryptanalysis tries to directly get the secret from the person in real life, through
blackmail or coercion.

(i) ”Crypto” means:

Cryptography

Cryptocurrency

Kryptonite

CryptoKitties

Solution: Attendance question. Crypto stands for cryptography.

(j) The Magic Word is:

Midterm 1 Page 5 of 21 CS 161 – Fa 18

Adava Kedavra

Windgardium Leviosa

Stupify

Crucio

Solution: Attendance question.

Midterm 1 Page 6 of 21 CS 161 – Fa 18

Problem 3 Security Principles (12 points)
Write the best match for which security principle each situation.

Four CS 161 students, Chiyo, Habiba, Mr. Anderson, and Not Outis, decided that after learning about
security principles and buffer overflows, they could implement their own distributed database (a database
across multiple machines) with a focus on security!

(a) Mr. Anderson suggests code their database in a higher-level programming language since they could
avoid common security problems later on. Which security principle did he to use here?

Solution: Design in Security from the Start

(b) Let’s say they start coding their database and realized that a malicious user on one machine could
corrupt their database. As a result, Habiba wants permission from at least 50% database users
before a machine can be taken down. Which security principle is she using here?

Solution: Division of Trust

(c) The database the students built was password-protected for modification and they use a snippet
(like the following) everywhere to check passwords:
String password = getPassword("user");

if (!password.equals(enteredPassword)) error();

Not Outis eventually forgets to put this snippet to check the passwords. What security principle
does this violate?

Solution: Ensure Complete Mediation

(d) To encrypt the data, Not Outis decides to take each piece of data and rotate the bytes in it by a
fixed amount. It figured that since their database was closed source, no one would figure out how
they were encrypting things. What security principle does this violate?

Solution: Shannon’s Maxim or Kerckhoff’s Principle

(e) Mr. Anderson decides that new users should automatically get privileged access in order to set up
their account to access whatever items they needed. After 1 hour, they would be dropped back to
regular permissions, an administrator would be notified of changes, and they could revert changes
if necessary. What security principle says this is not a good idea?

Solution: Fail-Safe Defaults

(f) After fixing all previous problems, Chiyo decides to refactor their encryption code into its own
module since a lot of it was spread across multiple modules. She also put all non-encryption code
in a sandbox so that no vulnerabilities in those modules could effect the overall security of the
database. What security principle is she trying to follow? What is she trying to minimize the size
of?

Solution: Privilege Separation, TCB

Midterm 1 Page 7 of 21 CS 161 – Fa 18

Problem 4 Go With The Control Flow (14 points)
The code below runs on a 32-bit Intel architecture. No defenses against buffer overflows are enabled.
The code was not compiled to produce a position independent executable. No optimizations are enabled,
and the compiler does not insert padding or reorder stack variables, which means buffer is at a lower
address than fp.

1 int run command (char ∗cmd) {
2 return system (cmd) ;
3 }
4 int p r i n t h e l l o (char ∗msg) {
5 p r i n t f (” He l lo %s !\n” , msg) ;
6 return 0 ;
7 }
8 int main () {
9 int (∗ fp) (char ∗) = &p r i n t h e l l o ;

10 char b u f f e r [8] ;
11 ge t s (b u f f e r) ;
12 fp (b u f f e r) ;
13 }

Note that the syntax int (*fp)(char *) indicates that fp is a pointer to a function which takes in a
char * and returns an int.

(a) What line contains a memory vulnerability? What is this vulnerability called?

Solution: Line 11. Buffer overflow!

(b) At line 12, we have that %ebp = 0xbfdead20 and &print hello = 0x08cafe13. Fill in the Python
egg below to give an input which will overwrite the return address of main, causing the exe-
cution of the shellcode after the program returns from main.

print ’A’ * + ’ ’ + ’AAAA’ + ’ ’ + SHELLCODE

Solution: print ’A’ * 8 + ’\x13\xfe\xca\x08AAAA\x28\xad\xde\xbf’ + SHELLCODE

First, write 8 bytes to overflow the buffer.

Line 12 calls the function fp before the function returns, so if we overwrite fp with garbage,
the program will try to dereference the garbage as the address of a function and crash. So we
need to overwrite the function pointer fp with its original value 0x08cafe13.

Next, write 4 bytes of garbage to overwrite the sfp.

Finally, overwrite the rip with the address of shellcode, which is 4 bytes above the rip: 0xbfdead20
+ 4 = 0xbfdead24.

(c) Which of the following would sometimes or always prevent the code that you gave in part (b) from
working? (Select all that apply.)

ASLR (same as part 5 on the project)

WˆX

Selfrando

Using a memory-safe language instead of C

Midterm 1 Page 8 of 21 CS 161 – Fa 18

Solution: ASLR and Selfrando (ASLR that also randomizes function locations) stop the ex-
ploit because you no longer have an absolute address to overwrite the rip with.

WˆX stops the exploit because you can’t execute the shellcode that you wrote on the stack
(since the stack is writable, and thus not executable).

Using a memory-safe language always stops buffer overflow attacks.

(d) “I know,” says Louis Reasoner, “let’s add stack canaries to make this impossible to exploit!” Obvi-
ously this doesn’t work. Fill in the Python egg below to give an input which will cause the execution
of run command("/bin/sh"). At line 12, we have that %ebp = 0xbfdead20 and &run command =

0x08c0de42. Hint: Note that gets can read in a NUL byte (\x00), even in the middle of its input.

print ’ ’

Solution: First, write the null-terminated string /bin/sh into buffer.

Next, overflow fp so it’s pointing at the address of the run command function. This causes line
12 to call run command with the argument in buffer, which is /bin/sh.

Note that this exploit never overwrites the stack canary, which would be above the fp local
variable.

print ’/bin/sh\x00\x42\xde\xc0\x08’

(e) Which of the following would sometimes or always prevent the code that you gave in part (d) from
working? (Select all that apply.)

ASLR (same as part 5 on the project)

WˆX

Selfrando

Using a memory-safe language instead of C

Solution: Project 1-style ASLR doesn’t stop the exploit because it doesn’t randomize the code
section, and the address of run command is located in the code section and thus stays the same
every time the program runs.

Selfrando (ASLR that also randomizes function locations) stops the exploit because it would
change the address of run command every time the program is run, so you wouldn’t know its
absolute address.

WˆX doesn’t stop the exploit because the exploit never tries to execute code on the stack.
(/bin/sh is just a string argument that gets passed to run command, not actual x86 instruc-
tions.)

Using a memory-safe language always stops buffer overflow attacks.

Midterm 1 Page 9 of 21 CS 161 – Fa 18

Problem 5 Ben Bitdiddle’s Preconditions (8 points)
Ben Bitdiddle did not do a good job at coming up with a set of preconditions for some functions. For
each code block, explain why with a short example the given preconditions are not sufficient to ensure
memory safety by giving a small example.
(a)

1 /∗ a r r a y o f s t r i n g s != NULL
2 n <= s i z e (a r r a y o f s t r i n g s)
3 max size > 0
4 f o r a l l i . 0 <= i < n ==>
5 a r r a y o f s t r i n g s [i] != NULL and i s a NUL−terminated s t r i n g ∗/
6 char ∗
7 c o n c a t a l l (char ∗ a r r a y o f s t r i n g s [] , s i z e t n , s i z e t max s ize) {
8 char ∗ concat = c a l l o c (max size , s izeof (char)) ;
9 i f (! concat) return NULL;

10 s i z e t space used = 0 ;
11 for (s i z e t i = 0 ; i < n ; i++) {
12 char ∗ s = a r r a y o f s t r i n g s [i] ;
13 s i z e t l en = s t r l e n (s) ;
14 strncpy (concat + space used , s , max s ize − space used − 1) ;
15 space used += len ;
16 }
17 return concat ;
18 }

Explanation:

Solution: Consider concat all({"abcde", "fghi"}, 2, 5). After the first loop iteration,
we will have space used = 5, max size = 5, and concat = "abcd\0". Then because of in-
teger overflow, we have max size - space used - 1 = (size t) -1 (which is really big!) On
the next iteration we write out-of-bounds, and this is a heap buffer overflow.

(b)
1 /∗ arr != NULL
2 n <= s i z e (arr)
3 f o r a l l i . 0 <= i < n ==> 0 <= arr [i] < n ∗/
4 int s o l v e i n t e r v i e w q u e s t i o n (int ∗ arr , s i z e t n) {
5 for (s i z e t i = 0 ; i < n ; i++)
6 ar r [a r r [i]] ∗= −1;
7 for (s i z e t i = 0 ; i < n ; i++)
8 i f (a r r [i] < 0)
9 return i ;

10 return 0 ;
11 }

Explanation:

Solution:

Consider arr = {1, 1}. Then all of the preconditions are met, but this accesses arr[-1] (in
the second loop iteration) which may not be defined.

Midterm 1 Page 10 of 21 CS 161 – Fa 18

Problem 6 Greetings Professor Falken! (9 points)
Consider the code below.

1 void l a u n c h n u c l e a r m i s s i l e s () {
2 puts (”Launching the nukes . . . ”) ;
3 /∗ code to launch nuc lear m i s s i l e s here ∗/
4 e x i t (1) ;
5 }
6
7 #define MAX INPUT 8
8 int main () {
9 char ∗ co r r ec t pas sword = mal loc (MAX INPUT ∗ s izeof (char)) ;

10 s t r cpy (correct password , ”S3creT\n”) ;
11 while (! f e o f (s td in)) {
12 char ∗ user password = mal loc (MAX INPUT ∗ s izeof (char)) ;
13 f g e t s (user password , MAX INPUT, s td in) ;
14 i f (strcmp (user password , co r r e c t pas sword) == 0)
15 l a u n c h n u c l e a r m i s s i l e s () ;
16 f r e e (user password) ;
17 f r e e (co r r e c t pas sword) ;
18 puts (”Wrong password , t ry again ! ”) ;
19 }
20 }

All compiler optimizations are disabled, and both the source and binary are not available to David
Lightman, who’s trying to log in to play a game. Consider the following (buggy) interaction:

1. David inputs “Hello” followed by a newline.

2. The program outputs “Wrong password, try again!”.

3. David inputs “Joshua” followed by a newline.

4. The program outputs “Launching the nukes...”, and then the nukes are launched.1

(a) Which memory safety vulnerability is present in this code?

Solution: Use after free. Line 17 frees the correct password variable on the heap, but the
next time the while loop runs, the variable gets used again at line 14.

(b) Explain why this issue leads to the behavior David observes.

Solution: The memory for correct password is reused by the next malloc for user password.
Therefore the second input is always correct as correct password == user password.

(c) How could you fix this issue in the code?

Solution: Delete line 17.

1This immediately vaporizing millions of humans and wildlife on impact, beginning World War III and eventually wip-
ing out most of the world due to an extended nuclear winter. This is why you don’t hack into systems without per-
mission. If you want to understand more how nuclear command, control, and decision making works, the two books to
read are Command and Control: Nuclear Weapons, the Damascus Accident, and the Illusion of Safety by Eric Schlosser, and
The 2020 Commission Report on the North Korean Nuclear Attacks Against the United States (A Speculative Novel) by Jef-
frey Lewis.

Midterm 1 Page 11 of 21 CS 161 – Fa 18

Problem 7 Fail Caesar (12 points)
A student at a well known Junior University decided to write their own Caesar Cipher after learning
about them in their computer security class. Unfortunately for the student, they fell asleep during the
lecture on memory safety. (Note: The atoi() function converts the initial portion of the string to an
integer, returning 0 in case of an error.)

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 void encrypt (int o f f s e t , char p l a i n t e x t []) {
4 char c i p h e r t e x t [6 4] ;
5 memset (c iphe r t ex t , 0 , 64) ;
6 int i = 0 ;
7 f g e t s (p l a in t ex t , 64 , s td in) ;
8 while (p l a i n t e x t [i]) {
9 c i p h e r t e x t [i] = p l a i n t e x t [i] + o f f s e t ;

10 i ++;
11 }
12 p r i n t f (c i p h e r t e x t) ;
13 }
14
15 int main (int argc , char ∗argv []) {
16 char b u f f e r [6 4] ;
17 int o f f s e t = 0 ;
18 i f (argc > 1) o f f s e t = a t o i (argv [1]) % 26 ;
19 while (! f e o f (s td in)) {
20 memset (bu f f e r , 0 , 64) ;
21 encrypt (o f f s e t , b u f f e r) ;
22 }
23 return 0 ;
24 }

(a) What line contains a memory vulnerability? What is this vulnerability called?

Solution: The vulnerable code is on line 12. This is a format string vulnerability, since the
attacker controls the first argument of printf.

(b) Give a file that, when input to the command failcaesar with no arguments, will cause the program
to crash.

Solution: Either a lot of %s or %n items, since these try to dereference pointers on the stack,
which will likely point to undefined parts of memory.

(c) How would you change the line to fix the vulnerability?

Solution: Change printf(ciphertext) to printf("%s", ciphertext) or fputs(ciphertext,
stdout). Also accept puts(ciphertext) or printf("%s\n", ciphertext) although they add
a trailing newline.

(d) The student’s friend who was awake for the memory safety lecture tells them to enable stack canaries
to make their code more secure. If an attacker does not have time to perform a bruteforce attack,
does enabling stack canaries prevent this code from being exploited? Explain why or why not.

Midterm 1 Page 12 of 21 CS 161 – Fa 18

Solution: No, in a format string vulnerability a malicious user can write directly to a desired
address in memory without making consecutive writes up the stack. As such, Mallory can write
around the stack canary to overwrite the return instruction pointer.

Midterm 1 Page 13 of 21 CS 161 – Fa 18

Problem 8 A Lack of Integrity... (9 points)
Alice and Bob want to communicate. They have preshared a symmetric key k. In order to send a
message M to Bob, Alice encrypts it using AES-CBC, and sends the encryption to Bob. (You may
assume that M ’s length is divisible by the AES-CBC block length and that characters are 8 bits, so no
padding is necessary.) Recall that the actual message sent is IV ||E(M), that is, the IV is prepended to
the message and sent all as a single stream of bytes. Alice uses a random IV for each message.

In order to make sure that Bob is listening, they agree to using pingback messages. If Alice sends a
message whose plaintext begins with the two bytes “PB”, then Bob sends back the rest of the message
in plaintext. For example, if Alice sends AES-CBCk(“PBI Love CS 161!”), then Bob responds “I Love
CS 161!” without any encryption.

Alice uses the protocol to communicate some message M to Bob. Assume M is not a pingback message.
Mallory, a man-in-the-middle attacker, decides to attempt to trick Bob into generating a pingback
message. She thus sends the message IV ′||IV ||E(M), where IV ′ is a random 128b string.

(a) With what probability will Mallory’s message trigger a pingback message?

Solution: 1 in 216. The first 2 characters = 2 bytes = 16 bits of plaintext need to be exactly
“PB”. The block cipher decryption of Mallory’s message will be effectively random, so the
probability the first 16 bits are exactly “PB” is 1

216 .

(b) If Mallory’s message triggers a pingback message, what does Mallory receive?

Solution: Recall block cipher decryption: Pi = Dk(Ci) ⊕ Ci−1. (This question could also be
solved by looking at the decryption diagram.)

Consider Mallory’s message IV ′||IV ||E(M). The IV is IV ′, the first block of ciphertext is IV ,
and the subsequent blocks of ciphertext are E(M).

The first block of ciphertext IV is random bytes, so the result of passing it through block
cipher decryption is 128 random bits = 16 random bytes. The decryption is XOR’d with the
IV, which is the random string IV ′, so the resulting plaintext block is 16 random bytes. If the
message triggers a pingback, the first two characters must be “PB”, and those are not sent in
the pingback. So the first thing Mallory receives is 14 random bytes.

The rest of the ciphertext is E(M). At the second block (where the first block of E(M) is),
the previous block of ciphertext is the first block of ciphertext, which happens to be IV . This
is exactly equivalent to decrypting Alice’s real message IV ||E(M) in CBC mode. So the next
thing Mallory receives is the real message.

(c) How can Alice and Bob change their protocol to prevent this attack?

Solution: Use a MAC, so Mallory can’t tamper with the message.

Midterm 1 Page 14 of 21 CS 161 – Fa 18

Problem 9 Screwups in Inserting an IV (15 points)
Alice encrypts two messages, M1 and M2 using the same IV/nonce and a deterministic padding scheme
(when appropriate for the particular mode) using AES (a 128b block cipher). Eve, the Eavesdropper,
knows the plaintext of M1, that each block of M1 is different, that M1 is 120 bytes, and that Alice never
sends any bytes she doesn’t have to. Unbeknownst to Eve, it turns out that the messages differ only in
the 21st byte of the two messages but are otherwise identical.

Yes, Alice screwed up. But how badly? For each possibility, select all which apply.

(a) If Alice used AES-ECB (Electronic Code Book), Eve is able to determine which of the following
about M2:

That M2 is exactly 120B long

The entire plaintext for M2

The entire plaintext for M2 except for the
2nd block

That M2 is less than 129B long but not the
exact length

The plaintext for only the first two blocks of
M2

The plaintext for only the first block of M2

Solution: Exact length is known because the last ciphertext blocks for two messages must be
identical: Attacker can deduce since the first message is 120B, and the second message has the
same last block, the second message must be 120B.

ECB is deterministic, so Eve knows every block of M2 except the second block is identical to
M1. But she has no way of decrypting or learning anything about the second block, since she
doesn’t know the key for the block cipher decryption, and as a result, the output of the second
block looks effectively random to her.

(b) If Alice used AES-CTR (Counter), Eve is able to determine which of the following about M2:

That M2 is exactly 120B long

The entire plaintext for M2

The entire plaintext for M2 except for the
2nd block

That M2 is less than 129B long but not the
exact length

The plaintext for only the first two blocks of
M2

The plaintext for only the first block of M2

Solution: Exact length is known because CTR mode naturally leaks the exact length of a
message (it doesn’t use padding).

CTR with nonce reuse is essentially a one-time pad with pad reuse, since the plaintext is
bitwise XOR’d with the output of the block cipher encryptions (the pad) to get ciphertext, and
the ciphertext is XOR’d with the output of the block cipher encryptions (the pad) to get the
plaintext.

Eve can notice that all the bits in the encryptions are the same except possibly some in the 21st
byte, deduce that a different bit of ciphertext corresponds to a different bit in the plaintext,
and learn the entire plaintext for M2.

Alternatively, she could XOR the ciphertext E(M1) with M1 to learn the pad, and then XOR
the pad with the ciphertext E(M2) to learn M2.

(c) If Alice used AES-CBC (Cipher Block Chaining), Eve is able to determine which of the following
about M2:

Midterm 1 Page 15 of 21 CS 161 – Fa 18

That M2 is exactly 120B long

The entire plaintext for M2

The entire plaintext for M2 except for the
2nd block

That M2 is less than 129B long but not the
exact length

The plaintext for only the first two blocks of
M2

The plaintext for only the first block of M2

Solution: The one bit difference in 2nd plaintext block completely changes the 2nd ciphertext
block, which gets input to the 3rd AES encryption, which changes the 3rd ciphertext block...

The last ciphertext block is completely different, and effectively random to the attacker who
doesn’t know the key. The attacker cannot deduce the length by looking at the last cipher
block.

Also, the attacker can only see that the first blocks of the two ciphertexts are identical, and
deduce that the first block of M2 is the same as the first block of M1. Everything after the first
block is effectively random to the attacker, so they can’t deduce anything else.

(d) If Alice used AES-CFB (Ciphertext Feedback), Eve is able to determine which of the following
about M2:

That M2 is exactly 120B long

The entire plaintext for M2

The entire plaintext for M2 except for the
2nd block

That M2 is less than 129B long but not the
exact length

The plaintext for only the first two blocks of
M2

The plaintext for only the first block of M2

Solution: Exact length is known because CFB mode naturally leaks the exact length of a
message (it doesn’t use padding).

The attacker sees that the first blocks of the two ciphertexts are identical, so she deduces that
the first block of M2 is the same as the first block of M1. Since the first blocks of the ciphertexts
are identical, and CFB mode feeds the ciphertext into the block cipher encryption, the output
of the second block cipher encryption is also identical. This output is then bitwise XOR’d with
the second block of plaintext to get the second block of ciphertext. Eve can see that the two
blocks of ciphertext differ in only one byte, and deduce that a different bit in the ciphertext for
M2 corresponds to a different bit in the plaintext for M2.

The second block of ciphertext, which differs in one byte between the two messages, is passed
into a block cipher encryption, which creates two completely different outputs for the two
messages. Everything after this is completely different, so Eve can’t learn anything more.

(e) If Alice did not screw up, which modes allow Eve to determine the exact length of a third message
M3 that is completely different from M1 and M2.

AES-ECB

AES-CTR

AES-CBC

AES-CFB

Midterm 1 Page 16 of 21 CS 161 – Fa 18

Solution: ECB and CBC use padding, so Eve can’t learn the exact length of a message when
the scheme is properly used.

CTR and CFB don’t use padding, so they naturally leak the exact length of a message.

Midterm 1 Page 17 of 21 CS 161 – Fa 18

Problem 10 No More Keys (7 points)
Frustrated by your newfound love of encryption schemes, your partner decides to throw away all of your
secret keys. As a student in CS 161, you decide to make the best of a bad situation. You decide to
design your own encryption scheme!

(a) Design the Decryption scheme.

Solution:

(b) This is IND-CPA:

Midterm 1 Page 18 of 21 CS 161 – Fa 18

True False

Solution: False. There’s no secret key, so anyone can perform encryption or decryption.

(c) The encryption is parallelizeable:

True False

Solution: False. The output of each block cipher is used as an input to the next block cipher.

(d) The decryption is parallelizeable:

True False

Solution: True. Each block cipher decryption only requires ciphertexts as inputs, which are
already known when decryption begins.

Midterm 1 Page 19 of 21 CS 161 – Fa 18

Problem 11 Like Water off a DUHK’s Back (12 points)
The ANSI X9.17/X9.31 is a fairly simple pRNG that was widely used based on a block cipher (commonly
AES). The internal state V and key K are combined with the current time T to update the state and
produce a ”random” value.

The current time is measured in microseconds as that is what the common operating system routines
return. This is a strong pRNG as long as the initial state V0 and the key K are both high entropy and
secret, and the block cipher is secure.

Unfortunately this scheme can fail badly when common mistakes are made. The standard never specified
how to select K. So some implementations, rather than using a high-entropy source to seed a secret K,
used a hardcoded key. The result is a catastrophic failure2.

(a) If the attacker exactly knows K, T1, and R1, the attacker can then recover V0. How?

Solution: R1 = EK(V0 ⊕ EK(T1))

Decrypt both sides:

DK(R1) = V0 ⊕ EK(T1)

XOR both sides with EK(T1):

DK(R1)⊕ EK(T1) = V0

(b) Since one can then use this to calculate R0 given T0, what design principle for a good pRNG does
this fail to implement?

Solution: Rollback Resistance. Given the current state of the pRNG, you can calculate the
previous state.

(c) If the attacker knows T0 and T1 with just millisecond resolution, the attacker can check to see if a
possible candidate for T0 and T1 is consistent with guesses for R0 and thereby know they found V0.
How many possible combinations of T0 and T1 may potentially need to be checked to determine V0?

Solution: There are 1,000 microseconds in a millisecond, so the attacker needs to try 1,000
possible times for T0 and 1,000 possible times for T1. This is (1,000)(1,000) = 1,000,000 com-
binations of T0 and T1.

2This was analyzed as the DUHK (“Don’t Use Hardcoded Keys”) attack, and it worked against FortiGate VPNs. For more
details see https://duhkattack.com. This catastrophic failure mode is why it is no longer part of the standard suite of pRNGs.

Midterm 1 Page 20 of 21 CS 161 – Fa 18

Midterm 1 Page 21 of 21 CS 161 – Fa 18

