UNIVERSITY OF CALIFORNIA AT BERKELEY CE C30/ME C85, Section 2, Fall 2020 Department of Civil and Environmental Engineering Instructor: F. Armero

CE C30/ME C85, Section 2, Final Examination

Open books and notes, online, 3 hours

Maximum of 3 one-sided pages per problem

Wednesday, December 16, 2020

LAST NAME: _____

FIRST NAME: _____

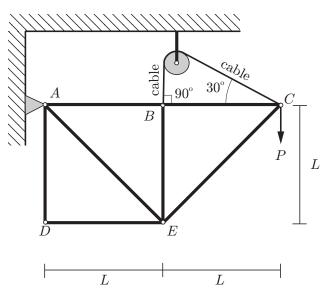
LAST 4 DIGITS OF STUDENT ID #:

BOX YOUR ANSWERS

NUMBER PAGES PER PROBLEM

Page 1.1, Page 1.2,... Page 2.1,...

•••

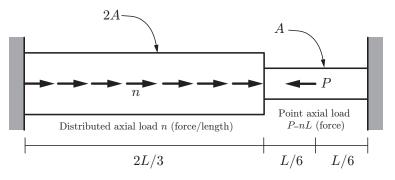

Problem 1:	/15
Problem 2:	/20
Problem 3:	/15
Problem 4:	/20
Problem 5:	/15
Problem 6:	/15
TOTAL:	/100

	CE C30/ME C85, Section 2, Fall Semester 2020 Online Examinations Honor Code Statement
LA	ST NAME:
FIF	RST NAME:
LA	ST 4 DIGITS OF STUDENT ID $\#$:
lis (: (:	 v signing below, I acknowledge that, following the earlier estabhed and agreed rules for online examinations in this course: 1) I have worked out this examination individually, 2) I have not discussed nor communicated about any part of the exam with anybody, in any way, during the exam, 3) I have complied with the time assigned to the exam and its submission, acknowledging that no late submissions are accepted, and 4) The pages included in the PDF file that I am submitting form the totality of my exam, complying with the limitation of three one-sided pages maximum per problem.
S	IGNATURE:
DA	TE & TIME:
	Please sign, date and upload with your examination as PDF to the bcourses website.

Problem #1 (15%)

The truss depicted in the figure is held by a single cable going through a pulley (which is free to rotate), connecting joints C and B as shown (vertical at B, 30° at C). All the members of the truss have a $a \times a$ square section and are made of a linear elastic material with young modulus E.

- Determine the tension in the cable and the forces in all the members of the truss for the loading shown (a vertical force P at joint C).
- 2. Determine the maximum load P_{max} that can be applied so no member buckles.

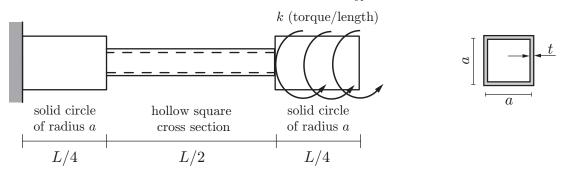

Remark: Express your results in terms of P, L, a and E, as needed.

Problem #2 (20%)

A composite bar of total length L is made by welding together two bars of lengths L/3and 2L/3, and cross section areas A and 2A, respectively, as shown in the figure. The composite bar is loaded by constant distributed axial loads n (force/length) on the long side and by a point axial load P = nL at the middle of the short side as shown, while kept attached to two rigid walls. The material can be considered to be isotropic linear elastic with Young modulus E. Determine:

- 1. The <u>reactions</u> at both ends.
- 2. The distribution of the <u>axial stress</u> along the composite bar (draw a plot with the characteristic values). Specify carefully the part that is in tension and compression.
- 3. The <u>displacement</u> of the connection between the two bars. Specify clearly its direction.

Remark: Express your results in terms of n, L, A and E, as needed.

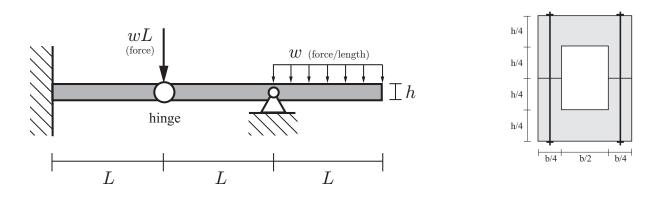


Problem #3 (15%)

A shaft of total length L has a hollow square section of side a and thickness $t \ll a$ along its middle half L/2, welded to two solid pieces of length L/4 each and circular cross section of radius a. All parts are made of the same material, which can be considered isotropic linear elastic with shear modulus G up to the yield limit τ_{yp} in shear. The shaft is subjected to a constant distributed torque k (torque/length) along one end piece, while fixed at the opposite end, as shown in the figure. Determine:

- 1. The angle of twist at the free end while the shaft remains elastic.
- **2.** The maximum value of k that can be applied before the shaft starts yielding.

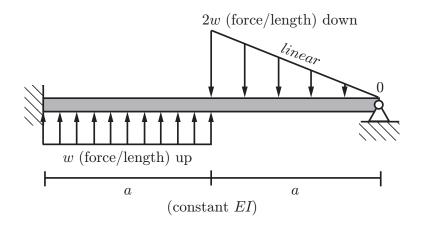
Remark: Express your answers in terms of k, L, τ_{yp} , G, a and t, as necessary.



Problem #4 (20%)

A beam is made by bolting together two pieces, leaving a hollow $h \times b$ rectangular cross section as shown. The beam is loaded as depicted in the figure and can be considered to be made of an isotropic linear elastic material with Young modulus E and Poisson ratio ν .

- 1. Draw carefully the bending moment and shear force diagrams (indicate clearly all the characteristic values).
- 2. Determine the maximum tensile and compressive stresses acting on a cross section.
- **3.** If the bolts are to be located at a constant spacing along the beam, determine the maximum spacing if the bolts can only take a maximum force F_{max}^{bolt} in shear.


Remark: Express your results in terms of w, h, b, L, E, ν and F_{max}^{bolt} , as needed.

Problem #5 (15%)

For the beam shown in the figure with its loading, determine:

- 1. The beam's deflection v(x). Sketch the deflected shape of the beam.
- 2. The bending moment M(x) and transverse shear force V(x) diagrams. Plot your answer indicating characteristic values.
- 3. The reacting forces and moments at the supports. Indicate clearly their directions.

Problem #6 (15%)

 Sketch the Mohr circles for the state of stress sketched in the figure, with <u>plane stress</u> in the z direction (perpendicular to the paper). Determine the principal stresses and the planes where they act (sketch clearly a block oriented along these directions with the corresponding stresses).

- 2. If the block shown in the figure is originally square, determine the relative elongation of the diagonal (shown as a dashed line) if the material is linear elastic with Young modulus $E = 200 \ GPa$ and Poisson ratio $\nu = 0.3$. Indicate if it stretches or contracts.
- **3.** If the material is observed to yield when this precise state of stress is reached, determine the uniaxial yield limit of material σ_{yp} that Tresca's criterion predicts.