CE C30/ME C85, Section 2, Midterm Examination

Open books and notes, online, 1 hour
Maximum of 3 one-sided pages per problem
October 21, 2020

LAST NAME: \qquad

FIRST NAME: \qquad

LAST 4 DIGITS OF STUDENT ID \#:

BOX YOUR ANSWERS

NUMBER PAGES
PER PROBLEM
Page 1.1, Page 1.2,...
Page 2.1,...
...

Problem 1:	$/ 40$
Problem 2:	$/ 25$
Problem 3:	$/ 35$
TOTAL:	$/ 100$

Page 0.1

CE C30/ME C85, Section 2, Fall Semester 2020

Online Examinations Honor Code Statement

LAST NAME: \qquad

FIRST NAME: \qquad

LAST 4 DIGITS OF STUDENT ID \#: __ _ _ _ _

By signing below, I acknowledge that, following the earlier established and agreed rules for online examinations in this course:
(1) I have worked out this examination individually,
(2) I have not discussed nor communicated about any part of the exam with anybody, in any way, during the exam,
(3) I have complied with the time assigned to the exam and its submission, acknowledging that no late submissions are accepted, and
(4) The pages included in the PDF file that I am submitting form the totality of my exam, complying with the limitation of three one-sided pages maximum per problem.

SIGNATURE: \qquad

DATE \& TIME: \qquad
Please sign, date and upload with your examination as PDF to the bcourses website.

Problem \#1 (40\%)

A rigid bar hangs vertically from the ceiling held by two elastic rods as shown in the figure. The rods have the same Young modulus E and cross section area A. All connections are pinned, and all members can be considered weightless.

A vertical load P and a horizontal force $2 P$ are applied at the bottom tip of the bar, as shown. Determine:

1. The forces in the rods.
2. The displacement of the bottom tip of the bar.

Problem \#2 (25\%)

1. Determine the forces in all the members in the truss of the figure when the vertical load of value P shown in the figure is applied. Indicate clearly if the member is in tension or compression.
2. If all the members have the same $0.1 \times 0.1 \mathrm{~m}^{2}$ square cross section, determine the maximum load value P that can be applied with a factor of safety of 1.5 if the material can only take $10 M P a$ in tension or compression.

Problem \#3 (35\%)
Draw the axial force, transversal shear force and bending moment diagrams for the beam shown in the figure. Indicate the characteristic values (min/max values, values at the ends and supports, slopes, linear/parabolic/cubic distributions,...).

