
S20 PHYSICS 7B: Bordel Final Solutions

Friendly neighborhood 7B GSIs

May 12, 2020

1 Problem 1

(a)

As a linear gas molecule with negligible vibrational energy, there are 5 degrees of freedom, and
hence γ = 7

5 ≈
3
2 .

The gas starts at PA and VA. Then the ideal gas law gives the temperature as

TA =
PAVA
nR

. (1.1)

After isobaric expansion to B, by definition, PB = PA. At this point, we don’t know VB and hence
don’t know TB, so let’s consider the next process. After the adiabatic expansion, the gas is at PC
and VC , where PC is given. Because the process is adiabatic, we have PBV

γ
B = PCV

γ
C .

We don’t know VB yet, so let’s consider the final process: an isothermal compression from VC to
VA. Because the compression is isothermal, we must have that TC = TA. Then applying the ideal
gas law, we find

VC =
nRTA
PC

=
PA
PC

VA. (1.2)

Then we can now determine VB using the adiabatic condition:

VB =

(
PC
PB

)1/γ

VC =

(
PC
PA

)2/3 PA
PC

VA =

(
PA
PC

)1/3

VA. (1.3)

And correspondingly the temperature:

TB =
PBVB
nR

=

(
PA
PC

)1/3 PAVA
nR

(1.4)
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(b)

We want to determine the heat in each process. For A→ B, we have QAB = nCP∆T = 7
2nR(TB−

TA) = 7
2

[(
PA
PC

)1/3
− 1

]
PAVA > 0. In the process B → C, we have QBC = 0. In the process

B → C, we have QCA = nRTA ln
(
VA
VC

)
= nRTA ln

(
PC
PA

)
= PAVA ln

(
PC
PA

)
< 0. Then the efficiency

is

η =
Qnet

Qin
=

7
2

[(
PA
PC

)1/3
− 1

]
+ ln

(
PC
PA

)
7
2

[(
PA
PC

)1/3
− 1

] . (1.5)

(c)

Plugging in PA = 8PC :

η = 1− 2 ln(8)

7
[
(8)1/3 − 1

] = 1− 6

7
ln 2 ∼ 1− 6

10
=

2

5
(1.6)

The ideal Carnot efficiency is given by

ηC = 1− Tcold

Thot
= 1− TA

TB
= 1−

(
PC
PA

)1/3

=
1

2
. (1.7)

So ηC ≥ η, as expected.

2 Problem 2

(a)

The electric field should be perpendicular to the conducting plane. Therefore, the potential should
be constant very near the surface, and hence V = 0. The perpendicular condition then requires
Ex = Ey = 0, while Ez = σ

ε0
is just the electric field from a charged conductor.

(b)

We should place a point charge of charge −q at x = y = 0 and z = −d.

(c)

The potential will just be the superposition of the two point charges:

V (x, y, z) =
q

4πε0

(
1√

x2 + y2 + (z − d)2
− 1√

x2 + y2 + (z + d)2

)
. (2.1)
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(d)

The technique we will use is to determine the electric field near z = 0, and then use that to
determine σ. Evidently, we need only consider Ez, so:

Ez(x, y, 0) = −∂V
∂z

∣∣∣∣
z=0

(2.2)

= − q

4πε0

(
z + d

(x2 + y2 + (z + d)2)3/2
− z − d

(x2 + y2 + (z − d)2)3/2

)
z=0

(2.3)

= − q

2πε0

d

(x2 + y2 + d2)3/2
(2.4)

=
σ

ε0
. (2.5)

And we hence find

σ = − qd

2π(x2 + y2 + d2)3/2
. (2.6)

3 Problem 3

(a)

Replace the capacitor with a capacitor and a resistor in parallel.

(b)

We apply Kirchhoff’s loop law to the loop created by resistor R and the capacitor. We get

V0 − VC − (I1 + I2)R = 0, (3.1)

where VC = Q
C is the voltage drop of the capacitor and Q is the charge on the capacitor. We

therefore have I1 = Q̇. Consider now the loop formed within the parallel circuit:

I2Ri − VC = 0, (3.2)

so I2 = VC
Ri

= Q
CRi

. The first loop equation now reads:

V0 −
Q

C
−
(
Q̇+

Q

CRi

)
R = 0. (3.3)

Rewriting into standard form:

Q̇+Q
R+Ri
CRRi

− V0

R
= 0, (3.4)
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which we can solve with the initial condition Q(0) = 0:

Q(t) = V0C
Ri

R+Ri

(
1− e−t/τ

)
, (3.5)

where τ = RRi
R+Ri

C.

(c)

The maximum charge is obtained for t→∞, from which we see Q→ CV0
Ri

R+Ri
. We saw the time

constant τ has a dependence on Ri as τ = RRi
R+Ri

C. This is nothing more than replacing the value
of R in the standard RC circuit with the equivalent resistance of the internal resistor and series
resistor in parallel. Note that RRi

R+Ri
≤ R, so the time constant has been reduced, and the capacitor

will charge more quickly.

(d)

Consider

Q̇(0) = V0C
Ri

R+Ri

1

τ
=
V0

R
. (3.6)

The ideal limit of the capacitor is given by taking Ri →∞, from which we obtain the standard RC
circuit equation:

Q(t) = V0C
(

1− e−t/τ
)
, (3.7)

with τ = RC. We then see

Q̇(0) =
V0C

τ
=
V0

R
, (3.8)

and we hence find that the initial charging rate in each case is the same.

4 Problem 4

(a)

Let us first determine the magnetic field on the symmetry axis of a ring of radius r with current I.
The Biot-Savart law says

dBz =
µ0I

4π

d`

r2 + z2
sin θ =

µ0I

4π

r d`

(r2 + z2)3/2
, (4.1)

and integrating around the ring then gives

Bz =
µ0I

2

r2

(r2 + z2)3/2
. (4.2)

Now consider the ribbon as being constructed from several such rings layered on each other. That
is, each ring has an infinitesimal current dI running through it, where dI = J da, where J is the
“current density,” or the current that passes through a cross-section of the ribbon da. Because the
current is uniformly distributed, we have J = I

wt . Then we have:

dBz =
µ0 dI

2

r2

(r2 + z2)3/2
=
µ0J

2

r2

(r2 + z2)3/2
da =

r2

(r2 + z2)3/2
dr dz′, (4.3)
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where the z′-direction is the same as the z-direction. Then we integrate this to obtain the final
magnetic field

Bz =

∫ R2

R1

∫ t/2

−t/2

µ0J

2

wtr2

(r2 + z2)3/2
dz′ dr =

µ0I

2w

∫ R2

R1

r2

(r2 + z2)3/2
dr. (4.4)

By symmetry, this is the only non-zero component of the magnetic field.

(b)

The applied magnetic field will act on the moving charges, causing them to build up on one side of
the ring. The build-up will generate an electric field on the conductor that will stabilize the charges
against the magnetic force.

(c)

We can directly compute the drift velocity of the free charges:

vd =
I

enA
=

I

enwt
. (4.5)

The magnetic force magnitude on these charges is then

FB = evdB =
IB

nwt
. (4.6)

In equilibrium, this is equal in magnitude to the electric force:

FE =
IB

nwt
= eE. (4.7)

Then we can immediately compute the Hall voltage from the electric field:

VH = wE =
IB

net
. (4.8)

By the RHR, the (negative) charges are gathering on the outside edge of the ring, and hence the
inner edge of the ring will have a higher potential.

(d)

We showed above:
VH = wE =

w

e
FE =

w

e
FB = wvdB, (4.9)

and hence

vd =
VH
wB

(4.10)

5 Problem 5

(a)

The current in the loop is due to the time-dependence of the current density js. The current density
generates a magnetic field that has a non-zero flux through the loop. Because js is time-dependent,
so too is the flux, and hence by Faraday’s law there is a current generated.

The sheet generates a field pointing out of the page. By Lenz’s Law, a CCW current would be
generated due to the flux of the magnetic field decreasing.
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(b)

The induced emf obeys E = IR, and is also given by Faraday’s law E = −dΦB
dt . We can write this:

−
∫
∂ ~B

∂t
· d~a = IR = abβB0 =

∫
βB0x̂ · d~a, (5.1)

where x̂ points out of the page. In particular, we are careful to note that the integration with
respect to ~a is the same ~a on both sides – it is the area element of the loop pointing in the x̂
direction, and we know that ~B ∝ x̂. Then we can take the derivative with respect to ~a and match
magnitudes:

−∂B
∂t

= βB0. (5.2)

This can then be solved with the initial condition B(0) = B0:

~B(t) = B0(1− βt)x̂. (5.3)

(c)

Use Ampere’s law: ∮
~B · d~l = µ0Ienc. (5.4)

Choose an Amperian loop that is rectangular, oriented such that the current density passes through
its enclosed surface, of height 2z, and of width `. We can see that only 2 legs of the loop (pointing
along ±ẑ) will contribute to the integral. The enclosed current is then just js`. Then Ampere’s
law gives ∮

~B · d~l = 2`B0(1− βt) = µ0js`, (5.5)

so
~B(t) = B0(1− βt)ẑ =

µ0js
2
ẑ. (5.6)

We can see that there is no relationship between js and B(t), and hence, the height h is irrelevant
in the problem.

(d)

We use our work from part (c):

js(t) =
2B(t)

µ0
=

2B0

µ0
(1− βt) (5.7)

6 Problem 6

(a)

At an infinitesimal section r → r + dr, the amount of charge is given by dQ = λ(r) dr =
λ0

(
1− r

L

)
dr. The velocity of the segment is v = ω0r, and we hence find that for a ring at

radius r and circumference ` = 2πr:

dI ` = dQv = λ0ω0r
(

1− r

L

)
dr. (6.1)

We hence find

dI =
λ0ω0

2π

(
1− r

L

)
dr. (6.2)
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(b)

The infinitesimal magnetic dipole moment of the rod is

d~µ = dI(r)A(r) =
λ0ω0

2π

(
1− r

L

)
πr2 drẑ, (6.3)

where z points in along the direction of the angular velocity vector ~ω as determined by the RHR.
Then

~µ =
λ0ω0

2

∫ L

0

(
1− r

L

)
r2 dr ẑ =

λ0ω0

2

(
L3

3
− L3

4

)
ẑ =

λ0ω0L
3

24
ẑ. (6.4)

(c)

The dipole moment is given by

~µ = I ~A = IπR2(cos θx̂+ sin θŷ), (6.5)

where x points in the direction of the magnetic field and y is the perpendicular direction.

The torque of the dipole is
τ̂ = ~µ× ~B = −IBπR2 sin θ x̂. (6.6)

Setting this equal to the mechanical torque:

Imθ̈ = −IBπR2 sin θ, (6.7)

where Im is the moment of inertia about the symmetry axis Im = mR2/2, so we get an equation
of motion

θ̈ = −2IBπ

m
sin θ. (6.8)

(d)

Taking θ small, the equation of motion becomes

θ̈ = −2IBπ

m
θ, (6.9)

which is precisely the equation of motion for a harmonic oscillator with frequency ω =
√

2IBπ
m .
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