S20 PHYSICS 7B: Bordel Final Solutions

Friendly neighborhood 7B GSIs

May 12, 2020

1 Problem 1

(a)

As a linear gas molecule with negligible vibrational energy, there are 5 degrees of freedom, and hence $\gamma=\frac{7}{5} \approx \frac{3}{2}$.

The gas starts at P_{A} and V_{A}. Then the ideal gas law gives the temperature as

$$
\begin{equation*}
T_{A}=\frac{P_{A} V_{A}}{n R} . \tag{1.1}
\end{equation*}
$$

After isobaric expansion to B, by definition, $P_{B}=P_{A}$. At this point, we don't know V_{B} and hence don't know T_{B}, so let's consider the next process. After the adiabatic expansion, the gas is at P_{C} and V_{C}, where P_{C} is given. Because the process is adiabatic, we have $P_{B} V_{B}^{\gamma}=P_{C} V_{C}^{\gamma}$.

We don't know V_{B} yet, so let's consider the final process: an isothermal compression from V_{C} to V_{A}. Because the compression is isothermal, we must have that $T_{C}=T_{A}$. Then applying the ideal gas law, we find

$$
\begin{equation*}
V_{C}=\frac{n R T_{A}}{P_{C}}=\frac{P_{A}}{P_{C}} V_{A} \tag{1.2}
\end{equation*}
$$

Then we can now determine V_{B} using the adiabatic condition:

$$
\begin{equation*}
V_{B}=\left(\frac{P_{C}}{P_{B}}\right)^{1 / \gamma} V_{C}=\left(\frac{P_{C}}{P_{A}}\right)^{2 / 3} \frac{P_{A}}{P_{C}} V_{A}=\left(\frac{P_{A}}{P_{C}}\right)^{1 / 3} V_{A} . \tag{1.3}
\end{equation*}
$$

And correspondingly the temperature:

$$
\begin{equation*}
T_{B}=\frac{P_{B} V_{B}}{n R}=\left(\frac{P_{A}}{P_{C}}\right)^{1 / 3} \frac{P_{A} V_{A}}{n R} \tag{1.4}
\end{equation*}
$$

(b)

We want to determine the heat in each process. For $A \rightarrow B$, we have $Q_{A B}=n C_{P} \Delta T=\frac{7}{2} n R\left(T_{B}-\right.$ $\left.T_{A}\right)=\frac{7}{2}\left[\left(\frac{P_{A}}{P_{C}}\right)^{1 / 3}-1\right] P_{A} V_{A}>0$. In the process $B \rightarrow C$, we have $Q_{B C}=0$. In the process $B \rightarrow C$, we have $Q_{C A}=n R T_{A} \ln \left(\frac{V_{A}}{V_{C}}\right)=n R T_{A} \ln \left(\frac{P_{C}}{P_{A}}\right)=P_{A} V_{A} \ln \left(\frac{P_{C}}{P_{A}}\right)<0$. Then the efficiency is

$$
\begin{equation*}
\eta=\frac{Q_{\mathrm{net}}}{Q_{\mathrm{in}}}=\frac{\frac{7}{2}\left[\left(\frac{P_{A}}{P_{C}}\right)^{1 / 3}-1\right]+\ln \left(\frac{P_{C}}{P_{A}}\right)}{\frac{7}{2}\left[\left(\frac{P_{A}}{P_{C}}\right)^{1 / 3}-1\right]} . \tag{1.5}
\end{equation*}
$$

(c)

Plugging in $P_{A}=8 P_{C}$:

$$
\begin{equation*}
\eta=1-\frac{2 \ln (8)}{7\left[(8)^{1 / 3}-1\right]}=1-\frac{6}{7} \ln 2 \sim 1-\frac{6}{10}=\frac{2}{5} \tag{1.6}
\end{equation*}
$$

The ideal Carnot efficiency is given by

$$
\begin{equation*}
\eta_{C}=1-\frac{T_{\mathrm{cold}}}{T_{\mathrm{hot}}}=1-\frac{T_{A}}{T_{B}}=1-\left(\frac{P_{C}}{P_{A}}\right)^{1 / 3}=\frac{1}{2} \tag{1.7}
\end{equation*}
$$

So $\eta_{C} \geq \eta$, as expected.

2 Problem 2

(a)

The electric field should be perpendicular to the conducting plane. Therefore, the potential should be constant very near the surface, and hence $V=0$. The perpendicular condition then requires $E_{x}=E_{y}=0$, while $E_{z}=\frac{\sigma}{\epsilon_{0}}$ is just the electric field from a charged conductor.
(b)

We should place a point charge of charge $-q$ at $x=y=0$ and $z=-d$.
(c)

The potential will just be the superposition of the two point charges:

$$
\begin{equation*}
V(x, y, z)=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+(z-d)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+(z+d)^{2}}}\right) \tag{2.1}
\end{equation*}
$$

(d)

The technique we will use is to determine the electric field near $z=0$, and then use that to determine σ. Evidently, we need only consider E_{z}, so:

$$
\begin{align*}
E_{z}(x, y, 0) & =-\left.\frac{\partial V}{\partial z}\right|_{z=0} \tag{2.2}\\
& =-\frac{q}{4 \pi \epsilon_{0}}\left(\frac{z+d}{\left(x^{2}+y^{2}+(z+d)^{2}\right)^{3 / 2}}-\frac{z-d}{\left(x^{2}+y^{2}+(z-d)^{2}\right)^{3 / 2}}\right)_{z=0} \tag{2.3}\\
& =-\frac{q}{2 \pi \epsilon_{0}} \frac{d}{\left(x^{2}+y^{2}+d^{2}\right)^{3 / 2}} \tag{2.4}\\
& =\frac{\sigma}{\epsilon_{0}} \tag{2.5}
\end{align*}
$$

And we hence find

$$
\begin{equation*}
\sigma=-\frac{q d}{2 \pi\left(x^{2}+y^{2}+d^{2}\right)^{3 / 2}} \tag{2.6}
\end{equation*}
$$

3 Problem 3

(a)

Replace the capacitor with a capacitor and a resistor in parallel.
(b)

We apply Kirchhoff's loop law to the loop created by resistor R and the capacitor. We get

$$
\begin{equation*}
V_{0}-V_{C}-\left(I_{1}+I_{2}\right) R=0, \tag{3.1}
\end{equation*}
$$

where $V_{C}=\frac{Q}{C}$ is the voltage drop of the capacitor and Q is the charge on the capacitor. We therefore have $I_{1}=\dot{Q}$. Consider now the loop formed within the parallel circuit:

$$
\begin{equation*}
I_{2} R_{i}-V_{C}=0 \tag{3.2}
\end{equation*}
$$

so $I_{2}=\frac{V_{C}}{R_{i}}=\frac{Q}{C R_{i}}$. The first loop equation now reads:

$$
\begin{equation*}
V_{0}-\frac{Q}{C}-\left(\dot{Q}+\frac{Q}{C R_{i}}\right) R=0 . \tag{3.3}
\end{equation*}
$$

Rewriting into standard form:

$$
\begin{equation*}
\dot{Q}+Q \frac{R+R_{i}}{C R R_{i}}-\frac{V_{0}}{R}=0 \tag{3.4}
\end{equation*}
$$

which we can solve with the initial condition $Q(0)=0$:

$$
\begin{equation*}
Q(t)=V_{0} C \frac{R_{i}}{R+R_{i}}\left(1-e^{-t / \tau}\right), \tag{3.5}
\end{equation*}
$$

where $\tau=\frac{R R_{i}}{R+R_{i}} C$.

(c)

The maximum charge is obtained for $t \rightarrow \infty$, from which we see $Q \rightarrow C V_{0} \frac{R_{i}}{R+R_{i}}$. We saw the time constant τ has a dependence on R_{i} as $\tau=\frac{R R_{i}}{R+R_{i}} C$. This is nothing more than replacing the value of R in the standard RC circuit with the equivalent resistance of the internal resistor and series resistor in parallel. Note that $\frac{R R_{i}}{R+R_{i}} \leq R$, so the time constant has been reduced, and the capacitor will charge more quickly.

(d)

Consider

$$
\begin{equation*}
\dot{Q}(0)=V_{0} C \frac{R_{i}}{R+R_{i}} \frac{1}{\tau}=\frac{V_{0}}{R} \tag{3.6}
\end{equation*}
$$

The ideal limit of the capacitor is given by taking $R_{i} \rightarrow \infty$, from which we obtain the standard RC circuit equation:

$$
\begin{equation*}
Q(t)=V_{0} C\left(1-e^{-t / \tau}\right) \tag{3.7}
\end{equation*}
$$

with $\tau=R C$. We then see

$$
\begin{equation*}
\dot{Q}(0)=\frac{V_{0} C}{\tau}=\frac{V_{0}}{R}, \tag{3.8}
\end{equation*}
$$

and we hence find that the initial charging rate in each case is the same.

4 Problem 4

(a)

Let us first determine the magnetic field on the symmetry axis of a ring of radius r with current I. The Biot-Savart law says

$$
\begin{equation*}
d B_{z}=\frac{\mu_{0} I}{4 \pi} \frac{d \ell}{r^{2}+z^{2}} \sin \theta=\frac{\mu_{0} I}{4 \pi} \frac{r d \ell}{\left(r^{2}+z^{2}\right)^{3 / 2}}, \tag{4.1}
\end{equation*}
$$

and integrating around the ring then gives

$$
\begin{equation*}
B_{z}=\frac{\mu_{0} I}{2} \frac{r^{2}}{\left(r^{2}+z^{2}\right)^{3 / 2}} . \tag{4.2}
\end{equation*}
$$

Now consider the ribbon as being constructed from several such rings layered on each other. That is, each ring has an infinitesimal current $d I$ running through it, where $d I=J d a$, where J is the "current density," or the current that passes through a cross-section of the ribbon da. Because the current is uniformly distributed, we have $J=\frac{I}{w t}$. Then we have:

$$
\begin{equation*}
d B_{z}=\frac{\mu_{0} d I}{2} \frac{r^{2}}{\left(r^{2}+z^{2}\right)^{3 / 2}}=\frac{\mu_{0} J}{2} \frac{r^{2}}{\left(r^{2}+z^{2}\right)^{3 / 2}} d a=\frac{r^{2}}{\left(r^{2}+z^{2}\right)^{3 / 2}} d r d z^{\prime}, \tag{4.3}
\end{equation*}
$$

where the z^{\prime}-direction is the same as the z-direction. Then we integrate this to obtain the final magnetic field

$$
\begin{equation*}
B_{z}=\int_{R_{1}}^{R_{2}} \int_{-t / 2}^{t / 2} \frac{\mu_{0} J}{2} \frac{w t r^{2}}{\left(r^{2}+z^{2}\right)^{3 / 2}} d z^{\prime} d r=\frac{\mu_{0} I}{2 w} \int_{R_{1}}^{R_{2}} \frac{r^{2}}{\left(r^{2}+z^{2}\right)^{3 / 2}} d r \tag{4.4}
\end{equation*}
$$

By symmetry, this is the only non-zero component of the magnetic field.

(b)

The applied magnetic field will act on the moving charges, causing them to build up on one side of the ring. The build-up will generate an electric field on the conductor that will stabilize the charges against the magnetic force.

(c)

We can directly compute the drift velocity of the free charges:

$$
\begin{equation*}
v_{d}=\frac{I}{e n A}=\frac{I}{e n w t} \tag{4.5}
\end{equation*}
$$

The magnetic force magnitude on these charges is then

$$
\begin{equation*}
F_{B}=e v_{d} B=\frac{I B}{n w t} \tag{4.6}
\end{equation*}
$$

In equilibrium, this is equal in magnitude to the electric force:

$$
\begin{equation*}
F_{E}=\frac{I B}{n w t}=e E \tag{4.7}
\end{equation*}
$$

Then we can immediately compute the Hall voltage from the electric field:

$$
\begin{equation*}
V_{H}=w E=\frac{I B}{n e t} \tag{4.8}
\end{equation*}
$$

By the RHR, the (negative) charges are gathering on the outside edge of the ring, and hence the inner edge of the ring will have a higher potential.

(d)

We showed above:

$$
\begin{equation*}
V_{H}=w E=\frac{w}{e} F_{E}=\frac{w}{e} F_{B}=w v_{d} B \tag{4.9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
v_{d}=\frac{V_{H}}{w B} \tag{4.10}
\end{equation*}
$$

5 Problem 5

(a)

The current in the loop is due to the time-dependence of the current density j_{s}. The current density generates a magnetic field that has a non-zero flux through the loop. Because j_{s} is time-dependent, so too is the flux, and hence by Faraday's law there is a current generated.

The sheet generates a field pointing out of the page. By Lenz's Law, a CCW current would be generated due to the flux of the magnetic field decreasing.

(b)

The induced emf obeys $\mathcal{E}=I R$, and is also given by Faraday's law $\mathcal{E}=-\frac{d \Phi_{B}}{d t}$. We can write this:

$$
\begin{equation*}
-\int \frac{\partial \vec{B}}{\partial t} \cdot d \vec{a}=I R=a b \beta B_{0}=\int \beta B_{0} \hat{x} \cdot d \vec{a}, \tag{5.1}
\end{equation*}
$$

where \hat{x} points out of the page. In particular, we are careful to note that the integration with respect to \vec{a} is the same \vec{a} on both sides - it is the area element of the loop pointing in the \hat{x} direction, and we know that $\vec{B} \propto \hat{x}$. Then we can take the derivative with respect to \vec{a} and match magnitudes:

$$
\begin{equation*}
-\frac{\partial B}{\partial t}=\beta B_{0} . \tag{5.2}
\end{equation*}
$$

This can then be solved with the initial condition $B(0)=B_{0}$:

$$
\begin{equation*}
\vec{B}(t)=B_{0}(1-\beta t) \hat{x} . \tag{5.3}
\end{equation*}
$$

(c)

Use Ampere's law:

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{\mathrm{enc}} . \tag{5.4}
\end{equation*}
$$

Choose an Amperian loop that is rectangular, oriented such that the current density passes through its enclosed surface, of height $2 z$, and of width ℓ. We can see that only 2 legs of the loop (pointing along $\pm \hat{z}$) will contribute to the integral. The enclosed current is then just $j_{s} \ell$. Then Ampere's law gives

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{l}=2 \ell B_{0}(1-\beta t)=\mu_{0} j_{s} \ell \tag{5.5}
\end{equation*}
$$

so

$$
\begin{equation*}
\vec{B}(t)=B_{0}(1-\beta t) \hat{z}=\frac{\mu_{0} j_{s}}{2} \hat{z} . \tag{5.6}
\end{equation*}
$$

We can see that there is no relationship between j_{s} and $B(t)$, and hence, the height h is irrelevant in the problem.

(d)

We use our work from part (c):

$$
\begin{equation*}
j_{s}(t)=\frac{2 B(t)}{\mu_{0}}=\frac{2 B_{0}}{\mu_{0}}(1-\beta t) \tag{5.7}
\end{equation*}
$$

6 Problem 6

(a)

At an infinitesimal section $r \rightarrow r+d r$, the amount of charge is given by $d Q=\lambda(r) d r=$ $\lambda_{0}\left(1-\frac{r}{L}\right) d r$. The velocity of the segment is $v=\omega_{0} r$, and we hence find that for a ring at radius r and circumference $\ell=2 \pi r$:

$$
\begin{equation*}
d I \ell=d Q v=\lambda_{0} \omega_{0} r\left(1-\frac{r}{L}\right) d r . \tag{6.1}
\end{equation*}
$$

We hence find

$$
\begin{equation*}
d I=\frac{\lambda_{0} \omega_{0}}{2 \pi}\left(1-\frac{r}{L}\right) d r . \tag{6.2}
\end{equation*}
$$

(b)

The infinitesimal magnetic dipole moment of the rod is

$$
\begin{equation*}
d \vec{\mu}=d I(r) A(r)=\frac{\lambda_{0} \omega_{0}}{2 \pi}\left(1-\frac{r}{L}\right) \pi r^{2} d r \hat{z}, \tag{6.3}
\end{equation*}
$$

where z points in along the direction of the angular velocity vector $\vec{\omega}$ as determined by the RHR. Then

$$
\begin{equation*}
\vec{\mu}=\frac{\lambda_{0} \omega_{0}}{2} \int_{0}^{L}\left(1-\frac{r}{L}\right) r^{2} d r \hat{z}=\frac{\lambda_{0} \omega_{0}}{2}\left(\frac{L^{3}}{3}-\frac{L^{3}}{4}\right) \hat{z}=\frac{\lambda_{0} \omega_{0} L^{3}}{24} \hat{z} . \tag{6.4}
\end{equation*}
$$

(c)

The dipole moment is given by

$$
\begin{equation*}
\vec{\mu}=I \vec{A}=I \pi R^{2}(\cos \theta \hat{x}+\sin \theta \hat{y}) \tag{6.5}
\end{equation*}
$$

where x points in the direction of the magnetic field and y is the perpendicular direction.
The torque of the dipole is

$$
\begin{equation*}
\hat{\tau}=\vec{\mu} \times \vec{B}=-I B \pi R^{2} \sin \theta \hat{x} . \tag{6.6}
\end{equation*}
$$

Setting this equal to the mechanical torque:

$$
\begin{equation*}
I_{m} \ddot{\theta}=-I B \pi R^{2} \sin \theta, \tag{6.7}
\end{equation*}
$$

where I_{m} is the moment of inertia about the symmetry axis $I_{m}=m R^{2} / 2$, so we get an equation of motion

$$
\begin{equation*}
\ddot{\theta}=-\frac{2 I B \pi}{m} \sin \theta . \tag{6.8}
\end{equation*}
$$

(d)

Taking θ small, the equation of motion becomes

$$
\begin{equation*}
\ddot{\theta}=-\frac{2 I B \pi}{m} \theta, \tag{6.9}
\end{equation*}
$$

which is precisely the equation of motion for a harmonic oscillator with frequency $\omega=\sqrt{\frac{2 I B \pi}{m}}$.

