Physics 89 Midterm Exam
Thursday, 10/15/2020, 12:40-2:10pm (PT)

Name or SID:

Instructions

1. Please submit the exam using Gradescope.
2. Please solve all 3 problems below.
3. The maximal score is 102 .

The Lecture zoom link will be open during the exam, and you can ask questions via the chat, or by email.

Good luck!

UC Berkeley's Honor Code
 "As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others."

- I alone am taking this exam.
- I will not receive assistance from anyone while taking the exam nor will I provide assistance to anyone while the exam is still in progress.
- Other than with the instructor and GSI, I will not have any verbal, written, or electronic communication with anyone else while I am taking the exam or while others are taking the exam.

Problem 1 [34pts] - short answers

(a) Define the two functions $f(x)$ and $g(x)$ by

$$
f(x)=\frac{1}{x^{2}+6 x+5}, \quad g(x)=\frac{1}{x^{2}+4 x+5} .
$$

The two Taylor series

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}+6 x+5}=\frac{1}{5}-\frac{6}{25} x+\frac{31}{125} x^{3}+\cdots \\
& g(x)=\frac{1}{x^{2}+4 x+5}=\frac{1}{5}-\frac{4}{25} x+\frac{11}{125} x^{3}+\cdots
\end{aligned}
$$

turn out to have different segments of convergence. The series for $g(x)$ converges for $|x|<\sqrt{5}$ and doesn't converge for $|x|>\sqrt{5}$, while the series for $f(x)$ converges for $|x|<1$ and doesn't converge for $|x|>1$.
Can you explain this fact using complex numbers?
[It is not important for this problem what happens at $x= \pm 1$ for $f(x)$ and $x= \pm \sqrt{5}$ for $g(x)$.]
(b) Recall our matrix notation for a linear system of equations in 3 variables X, Y, Z :

$$
\left.\begin{array}{rl}
a X+b Y+c Z & =p \\
d X+e Y+f Z & =q \\
g X+h Y+l Z & =s
\end{array}\right\} \Longrightarrow \quad \mathbf{M}=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & l
\end{array}\right), \quad \mathbf{A}=\left(\begin{array}{cccc}
a & b & c & p \\
d & e & f & q \\
g & h & l & s
\end{array}\right)
$$

Suppose after some row-operations we bring A to the form

$$
\xrightarrow{\text { Row operations }}\left(\begin{array}{cccc}
1 & 0 & 4 & 5 \\
0 & 1 & 5 & 6 \\
0 & 0 & 0 & T
\end{array}\right) .
$$

For which value(s) of T, if any, will there be a unique solution for X, Y, Z ?
For which value(s) of T, if any, will there be no solutions?
For which value(s) of T, if any, will there be more than one solution?

Problem 2 [34pts]

For each of the two differential equations,

$$
y^{\prime}(t)-y(t)=\cos (2 t), \quad y^{\prime}(t)-y(t)=\sin (2 t)
$$

find a solution $y(t)$ using complex number methods.
Note 1: $y(t)$ is an unknown function of t that you need to find, and $y^{\prime}(t)$ is its (unknown) derivative.
Note 2: Your final results should be real and should not contain any i, or $\operatorname{Re}(\cdots)$ or $\operatorname{Im}(\cdots)$.

Problem 3 [34pts]

Given the matrix below

$$
\mathbf{M}=\left(\begin{array}{cc}
1 & -2 \\
-4 & 3
\end{array}\right)
$$

solve the following problems:
(a) Find all the eigenvalues of \mathbf{M}.
(b) For each eigenvalue from part (a), find a corresponding eigenvector.
(c) Find a matrix \mathbf{C} and a diagonal matrix \mathbf{D} such that $\mathbf{M C}=\mathbf{C D}$.
(d) Apply the function whose graph is depicted below to the matrix \mathbf{M}. In other words, what is $f(\mathbf{M})$?

