
Optional.	Mark	along	the	line	to	show	your	feelings		 Before	exam:	[L____________________J].		
																on	the	spectrum	between	L	and	J.	 	 After	exam:	[L____________________J].	

UC Berkeley – Computer Science
CS61B: Data Structures

Midterm #1, Spring 2021

This test has 7 questions across 18 pages worth a total of 1280 points, and is to be completed in 110
minutes. The exam is closed book, except that you are allowed to use unlimited written cheat sheet (front
and back). No calculators or other electronic devices are permitted. Give your answers and show your
work in the space provided. Write the statement out below in the blank provided and sign your name.
You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

 Signature: ___________________________

Points # Points
1 240 5 220
2 120 6 110
3 120 7 160
4 310 8
 TOTAL 1280

Name: __________________________

SID: ___________________________

GitHub Account # : sp21-s_____

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but
bear in mind that we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones you are comfortable with
first. Do not get overly captivated by interesting design issues or complex corner cases you’re
not sure about.

• Not all information provided in a problem may be useful, and you may not need all lines.
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the
exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is
not ‘does not compile.’

• ○	indicates that only one circle should be filled in.
• □ indicates that more than one box may be filled in.
• For answers which involve filling in a ○	or □, please fill in the shape completely.

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 2	

1. Cal Central.
a) (30 points). Let's start with a short helper method that will be useful in later questions. Fill in public
static boolean contains(int[] a, int x) so it returns true if and only if the integer array a contains the
integer x. Your solution may use at most 9 lines. (Clarification: you can assume a will never be null.)

public class Utils {
 public static boolean contains(int[] a, int x) {
 for (int i=0; i < a.length; i += 1) {
 if (x == a[i]) {
 return true;
 }
 }
 return false;
 }
}

For the remainder of this problem we'll be trying to complete the CalStudent and CourseCatalog classes
given below. Quick note: You might observe that these classes are poorly designed (public instance
variables and a bad choice of data structure). We'll address this in part d of this problem.

public class CourseCatalog {
 public int[] courses;

 public CourseCatalog() {
 courses = new int[0];
 }

 public void offerNewCourse(int courseid) {
 /* ... */
 }
}

public class CalStudent {
 public String name;
 public int[] courses;
 public int numOfCourses;

 public CalStudent(String name) {
 this.name = name;
 this.courses = new int[4];
 numOfCourses = 0;
 }

 public void addCourse(int courseid, CourseCatlog cc) {
 /* ... */
 }
}

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 3	

The behavior we are interested in is as follows:

• Courses at Cal are referred to by their integer courseid.
• To add a course for CalStudent x , we call the x.addCourse(int courseid, CourseCatalog

cc) method. If the course obeys the three restrictions below, the course is added to the first
available spot in x's length 4 courses array. If it does not obey the restrictions, nothing happens.

1. Students may only take courses that are available in the course catalog.
2. Students may only be in at most 4 courses at the same time.
3. Students cannot add the same class more than once.

• To offer a new course to a CourseCatalog called cc, we call the cc.offerNewCourse(int
courseid) method. If the course is not already in the catalog, it is added. If it is already in the
catalog, nothing happens.

Here is an example usage of these classes:

CourseCatalog cc = new CourseCatalog(); -> initially empty
CalStudent omar = new CalStudent();
omar.addCourse(22076, cc); // nothing added, invalid course
cc.offerNewCourse(22076); // 22076 added to course catalog
cc.offerNewCourse(22076); // nothing added, 22076 already exists
cc.offerNewCourse(24890); // 24890 added to course catalog
omar.addCourse(22076, cc); // omar.courses: [22076, 0, 0, 0]

omar.addCourse(22076, cc); // omar.courses: [22076, 0, 0, 0] (no change)
omar.addCourse(24890, cc); // omar.courses: [22076, 24890, 0, 0]

cc.offerNewCourse(22078); // 22078 added to course catalog
cc.offerNewCourse(33150); // 33150 added to course catalog
cc.offerNewCourse(28108); // 28108 added to course catalog

omar.addCourse(22078, cc); // omar.courses: [22076, 24890, 22078, 0]
omar.addCourse(33150, cc); // omar.courses: [22076, 24890, 22078, 33150]

omar.addCourse(28108, cc); // [22076, 24890, 22078, 33150] (no change)

b) (120 Points) First, let's implement the void offerNewCourse(int courseid) method. You may use your
answer to part a (Utils.contains) as if it is correct. Do not worry about efficiency.

public class CourseCatalog {
 public int[] courses;

 public CourseCatalog() {
 courses = new int[0];
 }

 public void offerNewCourse(int courseid) {
 if (!Utils.contains(courses, courseid)) {
 int[] newArr = new int[courses.length + 1];
 for (int i = 0; i < courses.length; i++) {
 newArr[i] = courses[i];
 }
 newArr[courses.length] = courseid;
 courses = newArr;
 }
 }
}

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 4	

c) (60 Points) Next, lets implement the void addCourse(int courseid) method. You may use your answer
to part a (Utils.contains) as if it is correct, and you may assume that the CourseCatalog has been
correctly created. Do not worry about efficiency. Remember that the && operator is the equivalent of
“and” in Python or the equivalent of the & operator in MATLAB.

public class CalStudent {
 public String name;
 public int[] courses;
 public int numOfCourses;

 public CalStudent(String name) {
 this.name = name;
 this.courses = new int[4];
 numOfCourses = 0;
 }

 public void addCourse(int courseid, CourseCatalog cc) {
 if (numOfCourses < 4 && !Utils.contains(courses, courseid) &&
Utils.contains(cc.courses, courseid) {
 this.courses[numOfCourses] = courseid;
 numOfCourses += 1;
 }
 }
}

d) (30 Points) The design of the classes above is poor. One issue is that the classes expose their instance
variables as public. Instead, access to these variables should be private and the classes should provide
methods that do semantically useful tasks, e.g. the CourseCatalog might have a boolean
courseNumberExists(int i) method.

Another significant issue is the poor choice of data structure, specifically int[] in both classes. The
resulting code is awkward and overly verbose. As we said in the first lecture "Good programmers care
about the data structures [in their code]." One better choice of data structure would have been a List.
Give one reason why a List is better.

List Advantage:
• The	size	of	a	List	is	flexible,	so	we	don’t	need	to	create	an	entirely	new	array	whenever	we	

add	a	courseid	in	offerNewCourse().	
• A	list	keeps	track	of	its	own	size,	so	we	won’t	have	to	use	a	separate	numOfCourses	variable	

to	track	the	number	of	courses	added.	

Note that later in 61B, we will learn about the Set, which is an even better data structure for this task
than a List.

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 5	

2. WWJD (120 points). Consider the code below:

1: public class Egg {
2: public String owner;
3: public static String staticOwner;
4:
5: public Egg(String name) {
6: this.owner = name;
7: staticOwner = name;
8: }
9:
10: public void weirdExchange(String borrower, Egg g2) {
11: String lender = this.owner;
12: this.owner = borrower;
13: g2.owner = lender;
14: g2 = new Egg("Omar");
15: System.out.println("g2 owner: " + g2.owner);
16: }
17:
18: public static void main(String[] args) {
19: Egg g1 = new Egg("Itai");
20: Egg g2 = new Egg("Connor");
21:
22: String p1 = "Linda";
23: g1.weirdExchange(p1, g2);
24: System.out.println("g1 owner: " + g1.owner);
25: System.out.println("g2 owner: " + g2.owner);
26: System.out.println("Egg owner: " + Egg.staticOwner);
27: }
28:}

What will be printed when lines 23, 24, 25, and 26 execute?

For each line, check the bubble for the correct output or for "Error" if the line causes an error of any
kind. If a line causes an error, ignore it and still consider the output of lines below it.

Output printed when line
23 executed:

○ g2 owner: Itai ○ g2 owner: Connor

○ g2 owner: Linda ○ g2 owner: Omar ○ Error

Output printed when line
24 executed:

○ g1 owner: Itai ○ g1 owner: Connor

○ g1 owner: Linda ○ g1 owner: Omar ○ Error

Output printed when line
25 executed:

○ g2 owner: Itai ○ g2 owner: Connor

○ g2 owner: Linda ○ g2 owner: Omar ○ Error

Output printed when line
26 executed:

○ Egg owner: Itai ○ Egg owner: Connor

○ Egg owner: Linda ○ Egg owner: Omar ○ Error

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 6	

3. WWJDMS (120 points). Suppose we define the classes below:

public interface Instrument {
 default public String getName() {
 return "instrument";
 }
}

public class Guitar implements Instrument {
 public String getName() {
 return "guitar";
 }
}

public interface Music {
 default public void play(Instrument i) {
 System.out.println("music on a " + i.getName());
 }
}

public class Rock implements Music {
 public void play(Instrument i) {
 System.out.println("rock on a " + i.getName());
 }
 public void play(Guitar g) {
 System.out.println("RPG");
 }
}

public class Jota implements Music {
 public void play(Guitar g) {
 System.out.println("JPG");
 }
}

For each of the problems below, assume we have declared variables i and g as follows:

Instrument i = new Guitar();
Guitar g = new Guitar();

a) (30 Points) What will be the output of the two calls to play below? If the first line causes an error,
ignore it and still consider the output of the second line.

Rock r = new Rock();
r.play(i);
r.play(g);

r.play(i);

○ music on a instrument ○ rock on a instrument

○ rock on a guitar ○ music on a guitar

○ RPG ○ Error

r.play(g);

○ music on a instrument ○ rock on a instrument

○ rock on a guitar ○ music on a guitar

○ RPG ○ Error

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 7	

b) (30 Points) What will be the output of the two calls to play below? If the first line causes an error,
ignore it and still consider the output of the second line.

Music mr = new Rock();
mr.play(i);
mr.play(g);

mr.play(i);

○ music on a instrument ○ music on a guitar

○ rock on a instrument ○ rock on a guitar

○ RPG ○ Error

mr.play(g);

○ music on a instrument ○ music on a guitar

○ rock on a instrument ○ rock on a guitar

○ RPG ○ Error

c) (30 Points) What will be the output of the two calls to play below? If the first line causes an error,
ignore it and still consider the output of the second line.

Jota j = new Jota();
j.play(i);
j.play(g);

j.play(i);

○ music on a instrument ○ music on a guitar

○ JPG ○ Error

j.play(g);

○ music on a instrument ○ music on a guitar

○ JPG ○ Error

d) (30 Points) What will be the output of the two calls to play below? If the first line causes an error,
ignore it and still consider the output of the second line.

Music mj = new Jota();
mj.play(i);
mj.play(g);

mj.play(i);

○ music on a instrument ○ music on a guitar

○ JPG ○ Error

mj.play(g);

○ music on a instrument ○ music on a guitar

○ JPG ○ Error

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 8	

4. BLList. (310 points) Before starting this problem, be aware that for all parts of this problem, you
may assume the earlier parts were done correctly and can be used later, e.g. feel free to
use getNode from part c on remove from part e.

Suppose we have the BLList class defined below as follows. The addLast and get methods behave
exactly like you'd expect from a list, i.e. if we call addLast(5) then addLast(10), we'll end up with [5,
10], i.e. get(0) will return 5 and get(1) will return 10.

public class BLList<T> {
 public void addLast(T item) // adds an item to the end of the list
 public T get(int i) // gets the ith item
 public void remove(int i) // removes the ith item
 public int size() // returns the number of items
}

a) (40 Points) Fill in the JUnit test below to test that addLast and get work correctly. Your list should
include at least 3 elements. You may use a maximum of 12 lines. (Clarification: Assume any call to get
has an in-bounds index.)

import org.junit.Test;
import static org.junit.Assert.*;

public class TestBLList {
 @Test
 public void testAddLastAndGet() {
 BLList<Integer> b = new BLList<>();
 b.addLast(1);
 b.addLast(2);
 b.addLast(3);
 assertEquals(1, b.get(0));
 assertEquals(2, b.get(1));
 assertEquals(3, b.get(2));

 }
}

Let's now start to implement the BLList class. BLList stands for "backward linked list".
A BLList consists of a sentinel node which points backwards at the last item in the list. For example, if
we create a BLList then call addLast(0), the resulting list looks like:

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 9	

If we then call addLast(5), then addLast(10), the list will now look like the picture below,
i.e. get(0) would return 0, get(1) would return 5, and get(2) would return 10, i.e. we can think of the list
as [0, 5, 10].

b) (60 Points) Fill in the addLast function below.

public class BLList<T> implements MT1List<T> {
 private class Node {
 private T item;
 private Node prev;

 public Node(T i, Node p) {
 item = i;
 prev = p;
 }
 }

 private Node sentinel;
 private int size;

 public BLList() {
 sentinel = new Node(null, null);
 size = 0;
 }

 public void addLast(T item) {
 sentinel.prev = new Node(item, sentinel.prev);
 size += 1;
 }
 ...
}

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 10	

c) (80 Points) Next we'll write a useful private helper method called getNode(int i) that
uses recursion to find the ith node in the BLList. For example, for the picture above, getNode(2) would
return the node containing 10. If i is equal to the number of items in the list, then getNode should return
the sentinel node. For example, for the picture above, getNode(3) would return the sentinel. The
behavior is not defined for other values of i -- that is, for the diagram above, for i values that are not 0, 1,
2, or 3, we don't care what value your code returns or even if it errors. Your code must not use any
loops, i.e. no for or while.

public class BLList<T> implements MT1List<T> {
 ...
 private Node sentinel;
 private int size;
 ...

 private Node getNode(int i) {
 return getNode(size() – i, sentinel);
 }

 private Node getNode(int i, Node p) {
 if (i == 0) {
 return p;
 }
 return getNode(i - 1, p.prev);
 }
}

d) (50 Points) Instead we could have written an iterative version of getNode(int i). In this part of the
problem, write getNode(int i) which does not utilize recursion. It should behave exactly as in part c. You
may use a maximum of 11 lines.

public class BLList<T> implements MT1List<T> {
 ...
 private Node sentinel;
 private int size;
 ...

private Node getNode(int i) {
int numNodesToHop = size() – i;

 Node p = sentinel;

 while (numNodesToHop > 0) {
 p = p.prev;
 numNodesToHop -= 1;
 }

 return p;

 }
}

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 11	

Now let's write remove(int i). Like the methods above, the first item on the list is item 0. For example, if
we call remove(2) on the size 3 BLList above, we'd end up with:

e) (80 Points) Fill in the code below. You may use getNode(int i) even if your answers to part c and part
d were wrong. The remove method should do nothing if it is called with a index that is out of bounds.
(i.e. remove(3) should have no effect on a BLList with 3 elements in it, i.e. no effect on a BLList of size
3, i.e. the sentinel should not be removed). You may use a maximum of 7 lines. Recall the ||operator is
the equivalent of “or” in Python or the equivalent of the |operator in MATLAB.

public class BLList<T> implements MT1List<T> {
 ...
 private Node sentinel;
 private int size;
 ...

 public void remove(int i) {
 if (i < 0 || i >= size()) {
 return;
 }
 Node parentOfNodeToRemove = getNode(i + 1);
 parentOfNodeToRemove.prev = parentOfNodeToRemove.prev.prev;
 size -= 1;

 }
}

Since get(int i) and size() are trivial, we won't have you write them. However, you're welcome to use
these methods in any of the problem above if it seems like they're useful.

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 12	

5. MT1List (220 Points).

Suppose we have the MT1List interface defined as follows:

public interface MT1List<T>; {
 public void addLast(T item); // adds an item to the end of the list
 public T get(int i); // gets the ith item
 public void remove(int i); // removes the ith item
 public int size(); // returns the number of items
 public MT1List<T>; createList(); // returns a new empty MT1List<T>
}

a) (50 Points) Suppose we add a default public MT1List<T> getEvens() method which returns a new
list with all the even-indexed items. For example, suppose we have an MT1List X: ["ape", "banana",
"cow", "dog"]. Then X.getEvens() will return a new MT1List: ["ape", "cow"]. Fill in the code below.
You may use a maximum of 10 lines. X should not be changed in any way by the call to X.getEvens().

public interface MT1List<T> {
 ...

default public MT1List<T> getEvens() {
 MT1List<T> returnList = createList();
 for (int i = 0; i < size(); i += 1) {
 if (i % 2 == 0) {
 returnList.addLast(get(i));
 }
 }
 return returnList;
 }
}

Alternate solution:

public interface MT1List<T> {
 ...

default public MT1List<T> getEvens() {
 MT1List<T> returnList = createList();
 for (int i = 0; i < size(); i += 2) {
 returnList.addLast(get(i));
 }
 return returnList;
 }
}

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 13	

b) (80 Points) Suppose we add another default method: default public MT1List<T> remove(int start, int
end). This method removes all items in the list between indices start and end, inclusive, and returns a list
with all of the removed items.

For example, if we have a MT1List called X: ["ape", "banana", "cow", "dog", "elephant"], then after a
call to X.remove(1, 3), X will be ["ape", "elephant"], and the return value of the function will be a
new MT1List ["banana", "cow", "dog"]. Fill in the method below. You may use a maximum of 10 lines,
and you may assume that the arguments are valid (start is less than end, and both are valid indices).

public interface MT1List<T> {
...
default public MT1List<T> remove(int start, int end) {

MT1List<T> returnList = createList();
int numToRemove = end – start + 1;
for (int i = 0; i < numToRemove; i += 1) {
 returnList.addLast(get(start));
 remove(start);
}
return returnList;

 }
}

Alternate solution:

public interface MT1List<T> {
...
default public MT1List<T> remove(int start, int end) {

if (start > end) {
 return createList();
}
MT1List<T> partial = remove(start, end – 1);
partial.addLast(get(start));
remove(start);
return partial;

 }
}

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 14	

c) (90 Points) Lastly, suppose we add another default method: default public void reverse(). This
method reverses the list and returns nothing. For example, if we have a MT1List called X: ["ape",
"banana", "cow", "dog", "elephant"], then call X.reverse(), then X will become: ["elephant", "dog",
"cow", "banana", "ape"]. You may not use the new keyword for this problem, nor may you
call createList. You may use a maximum of 10 lines.

public interface MT1List<T> {
 ...
 default public void reverse() {
 int N = size();
 for (int i = N -2; i >= 0; i -= 1) {
 T x = get(i);
 remove(i);
 addLast(x);
 }
 }
}

Alternate solution:

public interface MT1List<T> {
 ...
 default public void reverse() {
 if (size() > 0) {
 T item = get(0);
 remove(0);
 reverse();
 addLast(item);
 }
 }
}

Note: If you want to do so, you can use any of these three default methods as helper methods for any of
the others. However, our solutions are completely independent and do not use each other.

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 15	

6. AListBug (110 points).

The AListMax100 below is a partial implementation of an array list that can store at most 100 items.
The implementation of the AListMax100 class has a serious bug that happens even when the list still has
plenty of space left. The bug is not that the AList can run out of space! The bug is also not an off-
by-one error!

1: public class AListMax100<Item> {
2: private Item[] items;
3: private static int size;
4:
5: /** Creates an empty list. */
6: public AListMax100() {
7: items = (Item[]) new Object[100];
8: size = 0;
9: }
10:
11: /** Inserts X into the back of the list if there is room. */
12: public void addLast(Item x) {
13: if (size >= 100) {
14: return;
15: }
16: items[size] = x;
17: size = size + 1;
18: }
19:
20: /** Returns the item from the back of the list or null if empty. */
21: public Item getLast() {
22: if (size == 0) {
23: return null;
24: }
25: return items[size - 1];
26: }
27:
29: /** Returns the number of items in the list. */
30: public int size() {
31: return size;
32: }
33:
34: // other methods not shown
35:}

a) (15 Points) What single line number could we change so that the bug is fixed?

Line number: 3

b) (15 Points) Describe how we would change the line of code to fix the bug.

Description of the bug fix: Remove the “static” keyword in front of size

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 16	

c) (80 Points) Below, write a JUnit test that fails because of the bug. You may use a maximum of 10
lines.

import org.junit.Test;
import static org.junit.Assert.*;

public class TestAListMax100 {
 @Test
 public void test() {

 AListMax100<Integer> L = new AListMax100<>();
 L.addLast(5);
 L.addLast(10);

 AListMax100<Integer> L2 = new AListMax100<>();
 L2.addLast(5);

 assertEquals(2, L.size());

 }
}

d) PNH (0 points). In what country would you expect to dance a Jota?

Answer: Spain.

CS61B MIDTERM 1, SPRING 2021
GitHub Account #: sp21-s______

	 17	

7. Tilt (160 points). For this problem, we will be re-implementing the tilt method from 2048! However,
this time around, we will represent a row of the board as a LinkedList.

For example, if one row of the 2048 board is [2, 64, 4, 4], then we will represent this with
the IntList below:

Below, write the tiltRowLeft method so that the given IntList (defined in the reference sheet) is
transformed into the result of a tilt operation towards the left. For this problem we assume you know the
basic rules for tilt operations from project 0. However, if you do not, they are repeated at the bottom of
this page. For simplicity on the exam:

1. You may assume that there are no empty tiles in the IntList given to you.
2. If there are merge operations, you do not need to create empty tiles at the end of the list.

For example, your code should pass the following JUnit tests:

@Test
 public void testNoMerge() {
 IntList L = IntList.of(2, 4, 2, 4);
 tiltRowLeft(L);
 IntList expected = IntList.of(2, 4, 2, 4);
 assertEquals(expected, L);
 }

 @Test
 public void testOneMerge() {
 IntList L = IntList.of(2, 2, 8, 4);
 tiltRowLeft(L);
 // Note that the operation below results in an
 // IntList of length 3! There are no 0 or null tiles!
 IntList expected = IntList.of(4, 8, 4);
 assertEquals(expected, L);
 }

 @Test
 public void testTwoMerges() {
 IntList L = IntList.of(2, 2, 4, 4);
 tiltRowLeft(L);
 IntList expected = IntList.of(4, 8);
 assertEquals(expected, L);
 }

 @Test
 public void testTrickyCase() {
 IntList L = IntList.of(2, 2, 4, 8);
 tiltRowLeft(L);
 IntList expected = IntList.of(4, 4, 8);
 assertEquals(expected, L);
 }

	 UC BERKELEY
GitHub Account #: sp21-s______	

	 18	

 @Test
 public void testMoreThanFour() {
 IntList L = IntList.of(2, 2, 4, 2, 8, 8, 4, 2, 2);
 tiltRowLeft(L);
 IntList expected = IntList.of(4, 4, 2, 16, 4, 4);
 assertEquals(expected, L);
 }

public static void tiltRowLeft(IntList tiles) {
 IntList p = tiles;
 while (p.rest != null) {
 if (p.first == p.rest.first) {
 p.first += p.first;
 p.rest = p.rest.rest;
 if (p.rest == null) { // Using this is optional.
 break; // If you don't want to break,
 } // just put "false" in the blank.
 }
 p = p.rest;
 }
}
Alternate solution:

public static void tiltRowLeft(IntList tiles) {

 IntList p = tiles;
 while (p != null && p.rest != null) {
 if (p.first == p.rest.first) {
 p.first += p.first;
 p.rest = p.rest.rest;
 if (false) { // Using this is optional.
 break; // If you don't want to break,
 } // just put "false" in the blank.
 }
 p = p.rest;
 }
}

Rules from the official project 0 page:

1. When moving tiles left, two tiles of the same value merge into one tile containing double the
initial number.

2. A tile that is the result of a merge will not merge again on that tilt. For example, if we have 64 ->
2 -> 2 -> 4, and we move the tiles to the left, we should end up with 64 -> 4 -> 4, not 64 -> 8.
This is because the leftmost 4 was already part of a merge so should not merge again.

3. When three adjacent tiles in the direction of motion have the same number, then the leading two
tiles in the direction of motion merge, and the trailing tile does not. For example, if we have 32
-> 2 -> 2 -> 2 and move tiles left, we should end up with 32 -> 4 -> 2 not 32 -> 2 -> 4.

As a corollary of these rules, if there are four adjacent tiles with the same number in the direction of
motion, they form two merged tiles. For example, if we have 4 -> 4 -> 4 -> 4, then if we move to the
left, we end up with 8 -> 8. This is because the leading two tiles will be merged as a result of rule 3, then
the trailing two tiles will be merged, but because of rule 2 these merged tiles (8 in our example) will not
merge themselves on that tilt.

