ME 40 - Final Exam Solutions
Short answer:
(1) A throttling process = constant enthalpy
(2) Air is cooled from $\phi_{1}=210 \%$ to $\phi_{2}=100 \%$

4 ow must be const

(3) On a psych chart, Constant wet bulb means approximately const enthalpy
(4) The adiabatic flame temp, Tat gets higher us we approach stoichiometric conditions.

So if α decreases, Tap will increase if α is above stoichiometric Conditions as we are getting closer to the ideal state
(5) For a process at Canst T, p

$$
G=U+P \nleftarrow-T S \rightarrow \text { Spontaneous process: } d G<0
$$

(1) Rankine Cycle $\dot{m}=75.0 \mathrm{~kg} / \mathrm{s}$

$$
\begin{array}{ll}
\dot{w}_{p}=\dot{m}\left(h_{2}-h_{1}\right) & \dot{w}_{n e t}=\dot{w}_{t}-\dot{w}_{p} \\
\dot{w}_{t}=\dot{m}\left(h_{3}-h_{4}\right) & \eta=\dot{\omega}_{\text {net }} \\
\dot{Q}_{\dot{Q}}=\dot{m}\left(h_{3}-h_{2}\right) &
\end{array}
$$

State 1: Sato Liquid at 10 kPa LD Table A-5:

$$
\begin{aligned}
& h_{1}=191.81 \mathrm{~kJ} / \mathrm{kg} \\
& \nabla_{1}=0.001010 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

State 2: Use Reversible work definition for a pump

$$
\hat{\omega}=\dot{m}\left(h_{2}-h_{1}\right) \quad \dot{u} r e v=\dot{m} \int_{P_{1}}^{P_{2}} v d p
$$

- for a prop, $s v=0$ due to incompressibility

$$
\begin{aligned}
L_{\Delta} & \dot{w} h\left(h_{2}-h_{1}\right)=v^{2} / v_{1}\left(P_{2}-P_{1}\right) \\
& L_{\Delta} h_{2}=v_{1}\left(P_{2}-P_{1}\right)+h_{1} \\
= & 0.001010(7000-10)+191.81=198.87 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

State 3: SH vapor @ $400^{\circ} \mathrm{C}$ and 7 MPa \rightarrow Table A-6:

$$
\begin{aligned}
& h_{3}=3159.2 \mathrm{~kJ} / \mathrm{kg} \\
& s_{3}=6.4502 \mathrm{~kJ} / \mathrm{kg}-\mathrm{k}
\end{aligned}
$$

State 4: $P=10 \mathrm{kPa}, S_{3}=S_{4}=6.4502$ 4Δ turbine is reversible \& adiabatic $\rightarrow \Delta S=0$
LDTable A-5:

$$
\begin{aligned}
& S_{f}=0.6492 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{k} \\
& S_{g}=8.1488 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{k} \\
& S_{f g}=7.4996 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{k}
\end{aligned}
$$

$S_{f} \angle S \angle S g \quad \rightarrow 2$ phase region

Find Qualify: $X=\frac{S_{4}-S_{F} F}{S f g}=\frac{6.4502-.6492}{7.4996}$

$$
x=0.774
$$

Find $h_{4}: h_{4}=h f+x(h f g)$

$$
\begin{aligned}
h f & =191.81 \mathrm{~kJ} / \mathrm{kg} \\
h f g & =2392.1 \mathrm{~kJ} / \mathrm{kg} \\
\ln _{\Delta} h_{4} & =191.81+(0.774)(2392.1)=2042.12 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

b)

$$
\begin{aligned}
\dot{w_{p}}=\dot{m}\left(h_{2}-h_{1}\right) & =75(198.87-191.81) \\
\dot{w}_{p} & =529.5 \mathrm{kw}
\end{aligned}
$$

c)

$$
\begin{aligned}
\dot{Q}_{\text {in }}=\bar{m}\left(h_{3}-h_{2}\right) & =75(3159.2-198.87) \\
\dot{Q}_{b} & =222024.75 \mathrm{kw}
\end{aligned}
$$

d)

$$
\begin{aligned}
\dot{w}_{t}=\dot{m}\left(h_{3}-h_{4}\right) & =75(3159.2-2042.12) \\
\dot{w}_{t} & =83781 \mathrm{kw}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \eta=\frac{\dot{w}_{\text {net }}}{\dot{\psi}_{b}}=\frac{\dot{w}_{t}-\dot{\omega}_{p}}{\dot{Q}_{b}}=\frac{83781-529.5}{222024.75} \\
& \eta=0.3749
\end{aligned}
$$

f) See T-S diagram
g)

h) $\dot{Q}_{p c}+\dot{\operatorname{m}} \hat{h}_{3}=\dot{w}_{p c}+\dot{m} h_{4}$ (11 ${ }^{\text {st Law Balance) }}$

$$
\dot{w}_{p c}=\dot{Q} p c+\dot{m}\left(h_{3}-h_{u}\right) \quad \dot{Q}_{p C}=120000 \mathrm{kw}
$$

From before: $h_{3}=3159.2 \mathrm{~kJ} / \mathrm{kg}$

State 4: SH Vapor $P=10 \mathrm{kPa}, T=400^{\circ} \mathrm{C}$
4 Table $A-6: h_{4}=3280.0 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
L_{D} \omega_{P C} & =120000+75(3159.2-3280.0) \\
\hat{W}_{P C} & =110940 \mathrm{~kW}
\end{aligned}
$$

(i)

$$
\begin{aligned}
& \eta=\frac{\dot{w}_{n e t}}{\dot{Q}_{\text {in }}}=\frac{\dot{w}_{p c}-\dot{\omega}_{p}}{\dot{Q}_{b}+\dot{Q}_{p c}}=\frac{110940-529.5}{222024+120000} \\
& \eta=0.323
\end{aligned}
$$

2. combustion
a) $\mathrm{C} 3 \mathrm{H}_{8}+a\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow \mathrm{bCO}_{2}+\mathrm{CH}_{2} \mathrm{O}$

$$
\begin{aligned}
& b=3 \\
& c=4 \\
& a(2) \rightarrow b(2)+c(7) \\
& a=5 \\
& d=18.8 .
\end{aligned}
$$

b) molar fuel - air ratio

$$
\frac{1 \mathrm{kmol}}{5 \mathrm{kmol}}
$$

c) $\frac{d z}{d t}=$ Qin-Qoul $+\sum$ Hreact $-\sum H$ products

Reactants

$$
\begin{aligned}
& \text { Reactants } \\
& \mathrm{C} 3 \mathrm{H}^{2} \rightarrow-103,850 \mathrm{~kJ} / \mathrm{kmol}+h(298)-h(2 a 8)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{O}_{2} \rightarrow \quad 0+h(298)-h(298)- \\
& N_{2} \rightarrow \quad 0+h(298)-h(298)
\end{aligned}
$$

products:

$$
\begin{aligned}
& \mathrm{CO}_{2} \rightarrow-393,520+h(700)-h(298) \\
& \mathrm{H}_{2} \mathrm{O} \rightarrow-285,830+h(700)-h(298) \\
& \mathrm{N}_{2} \rightarrow 0+h(700)-h(298)
\end{aligned}
$$

CO_{2}

$$
\begin{aligned}
& \frac{0}{2} \\
& n(700)=27,125 \mathrm{~kJ} / \mathrm{kmol} \\
& n(298)=93,64 \mathrm{~kJ} \mathrm{kmol}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{O}$ (vapor)

$$
\begin{aligned}
& \frac{(\text { vapur })}{h(700)}=24,088 \mathrm{~kJ} / \mathrm{kmol} \\
& h(298)=9,904 \mathrm{~kJ} / \mathrm{kmol}
\end{aligned}
$$

N2

$$
\begin{aligned}
\frac{W 2}{h(700)}= & 20,604 \mathrm{~kJ} / \mathrm{kmol} \\
h(298)= & 8,669 \mathrm{~kJ} / \mathrm{kmol} \\
\text { Qaut }= & .2[-103,850 \mathrm{~kJ} / \mathrm{kmol} \\
& \\
& -3(-393,520+27125-9344) \\
& -4(-285,830+24088-9904) \\
& -18.8(0+20,404-8669)]
\end{aligned}
$$

$$
\dot{Q u a t ~}^{\text {Qut }} 397,875.83 \mathrm{kw}
$$

