
Midterm Exam Solutions

Math H113, Feb. 25, 2021. Instructor: E. Frenkel

Problem 1.

Consider the group Z24.

(a) Describe its subgroup generated by the element 15.

Since g.c.d(24, 15) = 3, this subgroup is generated by 3 and since 24/3 = 8, it is
isomorphic to Z8.

(b) Give the list of all elements x of this group with the following property: the cyclic
subgroup generated by x is isomorphic to Z4.

This property is equivalent to g.c.d(24, x) = 24/4 = 6, hence x ∈ {6, 18}.

(c) Draw the diagram of all subgroups of Z24.

Here 〈1〉 = Z24 and each arrow denotes an embedding of subgroups:

〈1〉
↗ ↖

〈3〉 〈2〉
↖ ↗ ↖
〈6〉 〈4〉

↖ ↗ ↖
〈12〉 〈8〉

↖ ↗
〈0〉

Problem 2. Consider the permutation

σ =

(
1 2 3 4 5 6 7 8 9
7 5 9 8 4 3 1 2 6

)
(a) Describe the orbits of σ.

{1, 7}, {2, 5, 4, 8}, {3, 9, 6}

(b) Express σ as a product of disjoint cycles, and then as a product of transpositions.

(1, 7)(2, 5, 4, 8)(3, 9, 6) = (1, 7)(2, 8)(2, 4)(2, 5)(3, 6)(3, 9)

(c) What is the order of σ? Explain.

It is the l.c.m. of the orders of the above cycles, which are 2, 4, and 3. Hence the
order of σ is 12.

Problem 3. Let G be a group.



(a) Given two elements a, b ∈ G, define φa,b : Z× Z→ G by the formula

φa,b(m,n) = ambn, m, n ∈ Z.

Give the necessary and sufficient conditions on a and b for φa,b to be a group
homomorphism, and prove that this is so.

The elements x = (1, 0), y = (0, 1) generate Z, and the the relations between are
generated by xy = yx. Hence any homomorphism φ : Z→ G is uniquely determined
by a pair of commuting elements φ(x) and φ(y) of G. If φ = φa,b, these elements
are a and b. Hence the necessary and sufficient condition on a and b for φa,b to be
a group homomorphism is ab = ba.

(b) For a positive integer k, define the group Zk by induction: Zk = Z × Zk−1 for
k > 1, and Z1 = Z. Give an explicit description of the set of all homomorphisms
φ : Zk → G in terms of the group G (do not just give the definition) and prove it.

Let xi be the element of Zk whose ith component is 1 and all other components are
equal to 0. Then Zk is generated by xi, i = 1, . . . , k, and the relations between them
are generated by xixj = xjxi for all i 6= j. Hence any homomorphism φ : Zk → G is
uniquely determined by a k-tuple ai = φ(xi), i = 1, . . . , k, of mutually commuting
elements of G. Thus, we obtain a one-to-one correspondence between the set of all
homomorphisms φ : Zk → G and the set of such k-tuples.

Problem 4. For each group H below, determine whether the symmetric group S5 has a
subgroup isomorphic to H. If yes, then give an example of such a subgroup. If no, explain
why not.

(a) H = Z5

Yes. H = 〈(1, 2, 3, 4, 5)〉.

(b) H = Z6

Yes. H = 〈(1, 2)(3, 4, 5)〉.

(c) H = Z7

No. By Lagrange theorem, if Z7 is a subgroup of G, then 7 must be a divisor of
|G|. But |S5| = 5! is not divisible by 7.

Problem 5. Let G be a group.

(a) Suppose that H is a subgroup of G of index 2. Prove that H is a normal subgroup.

Left (resp., right) cosets of H form a partition of G, and one of them is H
itself. Since the index of H is equal to 2, we find that there is only one other left
(resp., right) coset, which then must be the complement G\H. Hence the left cosets
coincide with the right cosets, i.e. H is a normal subgroup.



(b) Suppose that H is a subgroup of G of index 3. Either prove that H is a normal
subgroup or give a counterexample and explain why it is a counterexample.

Counterexample: G = S3, H = 〈(1, 2)〉. Then the two elements (2, 3) and
(2, 3)(1, 2) are in the same left coset of H, but they are not in the same right
coset. Indeed, that would mean that (1, 2)(2, 3) = (2, 3)(1, 2) which is not true.

Problem 6. An automorphism of a group G is a permutation f : G→ G which is a group
isomorphism.

(a) Prove that the set of all automorphisms of a given group G is a subgroup of the
group SG of all permutations of G. Denote it by Aut(G).

First, we prove that Aut(G) ⊂ SG is closed under the operation of composition:
given f, g ∈ Aut(G), we find that f◦g(ab) = f(g(ab)) = f(g(a)g(b)) = fg(a)fg(b) =
(f ◦ g)(a)(f ◦ g)(b).

Second, the identity map G→ G is an isomorphism and hence belongs to Aut(G).
Third, given f ∈ Aut(G), the inverse map f−1 is an isomorphism. Indeed, take

arbitrary element a, b ∈ G. Since f is an isomorphism, a = f(a1), b = f(b1). Hence

f−1(ab) = f−1(f(a1)f(b1)) = f−1(f(a1b1)) = a1b1 = f−1(a)f−1f(b).

Thus, f−1(ab) = f−1(a)f−1f(b) for all a, b ∈ G.

(b) Describe Aut(Z).

An isomorphism φ : G → G must send a set of generators of G to a set of
generators of G (otherwise, φ is not surjective). Moreover φ is uniquely determined
by the image of a particular set of generators.

The group Z is generated by a single element; namely, 1. Hence an automorphism
of Z must send 1 to a generator of Z. It is clear that none of n with |n| > 1 is
a generator. This leaves only two possibilities: 1 and −1. Indeed, each generates
Z, and they correspond to the identity isomorphism and the sign isomorphism
x 7→ −x, ∀x ∈ Z, respectively. The composition of the latter isomorphism with
itself is the identity. Hence Aut(Z) ' Z2.

(c) Describe Aut(Z12).

The group Z12 has one generator; namely 1. As stated in (b), an automorphism φ
of Z12 is uniquely determined by φ(1) which must be a generator of Z12. Generators
of Z12 are its elements s which are relatively prime with 12, i.e. s ∈ {1, 5, 7, 11}.
Since the relations on s are generated by the relation 12 · s = 0, each s indeed gives
rise to an automorphism φs of Z12 sending m 7→ ms. Hence we obtain that Aut(Z12)
has 4 elements, so it must be isomorphic to either Z4 or Z2×Z2 (the Klein group).
To determine which one it is, we take the squares of the homomorphisms φs. We
have (φs ◦ φs)(m) = ms2. Since s2 = 1 mod 12 for all s ∈ {1, 5, 7, 11}, we obtain
that Aut(Z12) ' Z2 × Z2.

Problem 7. Describe the group of automorphisms of the symmetric group S3.



Note: In parts (b) and (c) of Problem 6 and in Problem 7, “describe” means describing the
group and identifying it with a group we have previously studied.

For any group G, there is a homomorphism G → Aut(G) sending g ∈ G to the inner
automorphism φg of G given by the formula φg(x) = gxg−1. However, in general this
homomorphism is neither injective nor surjective (for instance, if G is abelian, it sends all
g ∈ G to the identity).

We will prove that the homomorphism S3 → Aut(S3) is an isomorphism by using the
following observation: S3 has 3 transpositions σ1 = (1, 2), σ2 = (2, 3), and σ3 = (1, 3), and
these are the only elements of S3 of order 2. Now, for any automorphism φ of a group G
and any g ∈ G, the order of g is equal to the order of φ(g). Hence every automorphism of
S3 defines a permutation of the set A = {σ1, σ2, σ3}. Since these transpositions generate
S3, the automorphism itself is unique determined by this permutation.

Thus, we obtain a homomorphism Aut(S3)→ S3 (where S3 is the group of permutations
of A = {σ1, σ2, σ3}; it is the same group, but I used a different font to distinguish it from
the original group S3 of permutations of the set {1, 2, 3}).

Thus, we have constructed homomorphisms S3 → Aut(S3) and Aut(S3) → S3. Their
composition is a homomorphism S3 → S3. I claim that the latter is an isomorphism, which
immediately implies that both S3 → Aut(S3) and Aut(S3)→ S3 are isomorphisms (indeed,
if one of them were not an isomorphism, their composition would not be an isomorphism).

To see that S3 → S3 is an isomorphism, note that A = {σ1, σ2, σ3} = {(1, 2), (2, 3), 1, 3)}
is the set of all unordered pairs of elements of the set {1, 2, 3}. Every permutation of {1, 2, 3}
gives rise to a permutation of A, and this map is precisely the homomorphism S3 → S3

that we are considering. To see that this is a bijection, consider the complement of each
pair: (1, 2) 7→ 3, (2, 3) 7→ 1, (1, 3) 7→ 2. It then becomes clear that every permutation of
A defines a permutation of {1, 2, 3}. Hence we obtain the inverse homomorphism to our
homomorphism S3 → S3, so it is indeed an isomorphism.


