Midterm Exam Solutions

Math H113, Feb. 25, 2021. Instructor: E. Frenkel

Problem 1.

Consider the group \mathbb{Z}_{24}.
(a) Describe its subgroup generated by the element 15.

Since g.c.d $(24,15)=3$, this subgroup is generated by 3 and since $24 / 3=8$, it is isomorphic to \mathbb{Z}_{8}.
(b) Give the list of all elements x of this group with the following property: the cyclic subgroup generated by x is isomorphic to \mathbb{Z}_{4}.

This property is equivalent to g.c.d $(24, x)=24 / 4=6$, hence $x \in\{6,18\}$.
(c) Draw the diagram of all subgroups of \mathbb{Z}_{24}.

Here $\langle 1\rangle=\mathbb{Z}_{24}$ and each arrow denotes an embedding of subgroups:

Problem 2. Consider the permutation

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 5 & 9 & 8 & 4 & 3 & 1 & 2 & 6
\end{array}\right)
$$

(a) Describe the orbits of σ.

$$
\{1,7\},\{2,5,4,8\},\{3,9,6\}
$$

(b) Express σ as a product of disjoint cycles, and then as a product of transpositions.

$$
(1,7)(2,5,4,8)(3,9,6)=(1,7)(2,8)(2,4)(2,5)(3,6)(3,9)
$$

(c) What is the order of σ ? Explain.

It is the l.c.m. of the orders of the above cycles, which are 2, 4, and 3. Hence the order of σ is 12 .

Problem 3. Let G be a group.
(a) Given two elements $a, b \in G$, define $\phi_{a, b}: \mathbb{Z} \times \mathbb{Z} \rightarrow G$ by the formula

$$
\phi_{a, b}(m, n)=a^{m} b^{n}, \quad m, n \in \mathbb{Z}
$$

Give the necessary and sufficient conditions on a and b for $\phi_{a, b}$ to be a group homomorphism, and prove that this is so.

The elements $x=(1,0), y=(0,1)$ generate \mathbb{Z}, and the the relations between are generated by $x y=y x$. Hence any homomorphism $\phi: \mathbb{Z} \rightarrow G$ is uniquely determined by a pair of commuting elements $\phi(x)$ and $\phi(y)$ of G. If $\phi=\phi_{a, b}$, these elements are a and b. Hence the necessary and sufficient condition on a and b for $\phi_{a, b}$ to be a group homomorphism is $a b=b a$.
(b) For a positive integer k, define the group \mathbb{Z}^{k} by induction: $\mathbb{Z}^{k}=\mathbb{Z} \times \mathbb{Z}^{k-1}$ for $k>1$, and $\mathbb{Z}^{1}=\mathbb{Z}$. Give an explicit description of the set of all homomorphisms $\phi: \mathbb{Z}^{k} \rightarrow G$ in terms of the group G (do not just give the definition) and prove it.

Let x_{i} be the element of \mathbb{Z}^{k} whose i th component is 1 and all other components are equal to 0 . Then \mathbb{Z}^{k} is generated by $x_{i}, i=1, \ldots, k$, and the relations between them are generated by $x_{i} x_{j}=x_{j} x_{i}$ for all $i \neq j$. Hence any homomorphism $\phi: \mathbb{Z}^{k} \rightarrow G$ is uniquely determined by a k-tuple $a_{i}=\phi\left(x_{i}\right), i=1, \ldots, k$, of mutually commuting elements of G. Thus, we obtain a one-to-one correspondence between the set of all homomorphisms $\phi: \mathbb{Z}^{k} \rightarrow G$ and the set of such k-tuples.

Problem 4. For each group H below, determine whether the symmetric group S_{5} has a subgroup isomorphic to H. If yes, then give an example of such a subgroup. If no, explain why not.
(a) $H=\mathbb{Z}_{5}$

Yes. $H=\langle(1,2,3,4,5)\rangle$.
(b) $H=\mathbb{Z}_{6}$

Yes. $H=\langle(1,2)(3,4,5)\rangle$.
(c) $H=\mathbb{Z}_{7}$

No. By Lagrange theorem, if \mathbb{Z}_{7} is a subgroup of G, then 7 must be a divisor of $|G|$. But $\left|S_{5}\right|=5$! is not divisible by 7 .

Problem 5. Let G be a group.
(a) Suppose that H is a subgroup of G of index 2. Prove that H is a normal subgroup.

Left (resp., right) cosets of H form a partition of G, and one of them is H itself. Since the index of H is equal to 2 , we find that there is only one other left (resp., right) coset, which then must be the complement $G \backslash H$. Hence the left cosets coincide with the right cosets, i.e. H is a normal subgroup.
(b) Suppose that H is a subgroup of G of index 3. Either prove that H is a normal subgroup or give a counterexample and explain why it is a counterexample.

Counterexample: $G=S_{3}, H=\langle(1,2)\rangle$. Then the two elements $(2,3)$ and $(2,3)(1,2)$ are in the same left coset of H, but they are not in the same right coset. Indeed, that would mean that $(1,2)(2,3)=(2,3)(1,2)$ which is not true.

Problem 6. An automorphism of a group G is a permutation $f: G \rightarrow G$ which is a group isomorphism.
(a) Prove that the set of all automorphisms of a given group G is a subgroup of the group S_{G} of all permutations of G. Denote it by $\operatorname{Aut}(G)$.

First, we prove that $\operatorname{Aut}(G) \subset S_{G}$ is closed under the operation of composition: given $f, g \in \operatorname{Aut}(G)$, we find that $f \circ g(a b)=f(g(a b))=f(g(a) g(b))=f g(a) f g(b)=$ $(f \circ g)(a)(f \circ g)(b)$.

Second, the identity map $G \rightarrow G$ is an isomorphism and hence belongs to $\operatorname{Aut}(G)$.
Third, given $f \in \operatorname{Aut}(G)$, the inverse map f^{-1} is an isomorphism. Indeed, take arbitrary element $a, b \in G$. Since f is an isomorphism, $a=f\left(a_{1}\right), b=f\left(b_{1}\right)$. Hence

$$
f^{-1}(a b)=f^{-1}\left(f\left(a_{1}\right) f\left(b_{1}\right)\right)=f^{-1}\left(f\left(a_{1} b_{1}\right)\right)=a_{1} b_{1}=f^{-1}(a) f^{-1} f(b) .
$$

Thus, $f^{-1}(a b)=f^{-1}(a) f^{-1} f(b)$ for all $a, b \in G$.
(b) Describe $\operatorname{Aut}(\mathbb{Z})$.

An isomorphism $\phi: G \rightarrow G$ must send a set of generators of G to a set of generators of G (otherwise, ϕ is not surjective). Moreover ϕ is uniquely determined by the image of a particular set of generators.

The group \mathbb{Z} is generated by a single element; namely, 1 . Hence an automorphism of \mathbb{Z} must send 1 to a generator of \mathbb{Z}. It is clear that none of n with $|n|>1$ is a generator. This leaves only two possibilities: 1 and -1 . Indeed, each generates \mathbb{Z}, and they correspond to the identity isomorphism and the sign isomorphism $x \mapsto-x, \forall x \in \mathbb{Z}$, respectively. The composition of the latter isomorphism with itself is the identity. Hence $\operatorname{Aut}(\mathbb{Z}) \simeq \mathbb{Z}_{2}$.
(c) Describe $\operatorname{Aut}\left(\mathbb{Z}_{12}\right)$.

The group \mathbb{Z}_{12} has one generator; namely 1. As stated in (b), an automorphism ϕ of \mathbb{Z}_{12} is uniquely determined by $\phi(1)$ which must be a generator of \mathbb{Z}_{12}. Generators of \mathbb{Z}_{12} are its elements s which are relatively prime with 12 , i.e. $s \in\{1,5,7,11\}$. Since the relations on s are generated by the relation $12 \cdot s=0$, each s indeed gives rise to an automorphism ϕ_{s} of \mathbb{Z}_{12} sending $m \mapsto m s$. Hence we obtain that $\operatorname{Aut}\left(\mathbb{Z}_{12}\right)$ has 4 elements, so it must be isomorphic to either \mathbb{Z}_{4} or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (the Klein group). To determine which one it is, we take the squares of the homomorphisms ϕ_{s}. We have $\left(\phi_{s} \circ \phi_{s}\right)(m)=m s^{2}$. Since $s^{2}=1 \bmod 12$ for all $s \in\{1,5,7,11\}$, we obtain that $\operatorname{Aut}\left(\mathbb{Z}_{12}\right) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Problem 7. Describe the group of automorphisms of the symmetric group S_{3}.

Note: In parts (b) and (c) of Problem 6 and in Problem 7, "describe" means describing the group and identifying it with a group we have previously studied.

For any group G, there is a homomorphism $G \rightarrow \operatorname{Aut}(G)$ sending $g \in G$ to the inner automorphism ϕ_{g} of G given by the formula $\phi_{g}(x)=g x g^{-1}$. However, in general this homomorphism is neither injective nor surjective (for instance, if G is abelian, it sends all $g \in G$ to the identity).

We will prove that the homomorphism $S_{3} \rightarrow \operatorname{Aut}\left(S_{3}\right)$ is an isomorphism by using the following observation: S_{3} has 3 transpositions $\sigma_{1}=(1,2), \sigma_{2}=(2,3)$, and $\sigma_{3}=(1,3)$, and these are the only elements of S_{3} of order 2 . Now, for any automorphism ϕ of a group G and any $g \in G$, the order of g is equal to the order of $\phi(g)$. Hence every automorphism of S_{3} defines a permutation of the set $A=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. Since these transpositions generate S_{3}, the automorphism itself is unique determined by this permutation.

Thus, we obtain a homomorphism $\operatorname{Aut}\left(S_{3}\right) \rightarrow \mathbb{S}_{3}$ (where \mathbb{S}_{3} is the group of permutations of $A=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$; it is the same group, but I used a different font to distinguish it from the original group S_{3} of permutations of the set $\{1,2,3\}$).

Thus, we have constructed homomorphisms $S_{3} \rightarrow \operatorname{Aut}\left(S_{3}\right)$ and $\operatorname{Aut}\left(S_{3}\right) \rightarrow \mathbb{S}_{3}$. Their composition is a homomorphism $S_{3} \rightarrow \mathbb{S}_{3}$. I claim that the latter is an isomorphism, which immediately implies that both $S_{3} \rightarrow \operatorname{Aut}\left(S_{3}\right)$ and $\operatorname{Aut}\left(S_{3}\right) \rightarrow \mathbb{S}_{3}$ are isomorphisms (indeed, if one of them were not an isomorphism, their composition would not be an isomorphism).

To see that $S_{3} \rightarrow \mathbb{S}_{3}$ is an isomorphism, note that $\left.A=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}=\{(1,2),(2,3), 1,3)\right\}$ is the set of all unordered pairs of elements of the set $\{1,2,3\}$. Every permutation of $\{1,2,3\}$ gives rise to a permutation of A, and this map is precisely the homomorphism $S_{3} \rightarrow \mathbb{S}_{3}$ that we are considering. To see that this is a bijection, consider the complement of each pair: $(1,2) \mapsto 3,(2,3) \mapsto 1,(1,3) \mapsto 2$. It then becomes clear that every permutation of A defines a permutation of $\{1,2,3\}$. Hence we obtain the inverse homomorphism to our homomorphism $S_{3} \rightarrow \mathbb{S}_{3}$, so it is indeed an isomorphism.

