1. Air is contained in a piston cylinder device at an initial state of 200 kPa and $127^{\circ} \mathrm{C}$ and $0.8 \mathrm{~m}^{3}$ as shown. The air is compressed isothermally to 0.4 m 3 . Then the air is expanded at constant pressure until the volume is $1.6 \mathrm{~m}^{3}$. Assume that air is an ideal gas, and its internal energy is function of temperature only.
a. Sketch and label the system. Show and number the processes on a Pv diagram including directions of heat and work for each process.
b. Determine the total amount of heat transferred in the processes.

$\mathrm{P}_{1}-200 \mathrm{kPa}$
$\mathrm{T}_{1}-127^{\circ} \mathrm{C}$
$\mathrm{V}_{1}-0.8 \mathrm{~m}^{3}$

2. A steam turbine with an inlet flow of steam at $4.85 \mathrm{~kg} / \mathrm{sec}, 500^{\circ} \mathrm{C}$, and 10 MPa does 5000 kW of work. The steam exits at 10 kPa . Kinetic and potential energy changes are negligible. Find the exit temperature of the steam and quality if saturated. Draw the process on the diagram below and on a two-dimensional projection of the diagram below.

