Midterm 1, 10/1.
(1) The series

$$
\sum_{n=1}^{\infty} a_{n}
$$

is convergent.
(a) (4 pats) True or False? The series
converges.
(b) (4 puts) True or False? The series

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

converges

$$
\sum_{n=1}^{a^{2}}(\mathbb{F}) \sum_{n=1}^{\infty}-\frac{-11^{n}}{\sqrt{n}} \text { cow. , } \sum_{n=1}^{\infty} \frac{1}{n} d i v .
$$

(2)
converges.
2)

$$
f(x, y)=\ln \left(\left(\frac{x+y}{x-y}\right)^{\frac{1}{2}}\right)
$$

(a) (4 pant) True or False?

$$
\text { (F) } \frac{\partial f}{\partial x}=\frac{y}{x^{2}-y^{2}}
$$

(b) (4 put) True or False?

$$
\begin{aligned}
& f=\frac{1}{2}(x+y)-\frac{1}{2} \ln (x-y) \\
& \frac{\partial f}{\partial x}=\frac{1}{2} \frac{1}{x+y}-\frac{1}{2} \frac{1}{x y}=-\frac{y}{x^{2}-y^{2}}
\end{aligned}
$$

$\rightleftharpoons \frac{\partial f}{\partial y}=\frac{x}{x^{2}-y^{2}}$

$$
\begin{equation*}
f(x, y)=\sin (x+y) e^{x-y}=\sum_{n, m=0}^{\infty} a_{n, m} x^{n} y^{m} \tag{3}
\end{equation*}
$$

(a) (4 pant) True or False? $\frac{\partial f}{\partial y}=\frac{1}{2} \frac{1}{x+y}+\frac{1}{2(x-y)}=$

$$
=\frac{x}{x^{7}-y^{2}}
$$

(b) (4 pant) True or False?

$$
a_{1,1}=0
$$

(c) (4 pant) True or False?

$$
a_{2,1}=0 \quad F
$$

(4) Consider the power series

$$
a_{3,0}=0 \quad F
$$

$$
\sum_{n=0}^{\infty} \frac{1}{n+5}\left(\frac{z+2 i}{1+2 i}\right)^{n}
$$

(a) (9 puts) Find the radius of convergence of this power series.
(b) (2 puts) True or False? This powers series can conditionally converge inside the disc of convergence.
(c) (2 pats) True or False? This power series can conditionally converge outside of the disc of convergence.

E © Any power series conn. absolutely inside the disc of conn. and div. outside.

$$
\begin{aligned}
& \text { (3) } f=\sin (x+y) e^{x-y}=\left((x+y)-\frac{(x+y)^{3}}{6}+\cdots\right) \\
& \left(1+x-y+\frac{(x-y)^{2}}{2}+\cdots\right)=x+y+(x+y)(x-y)+ \\
& +(x+y) \frac{(x-y)^{2}}{2}-\frac{(x+y)^{3}}{6}+\cdots=x+y+x^{2}-y^{2}+ \\
& +\frac{\left(x^{2}-y^{2}\right)(x-y)}{2}-\frac{x^{3}+3 x^{2} y+\cdots}{6}=x+y+x^{2}-y^{2}+ \\
& +\frac{x^{3}-x^{2} y}{2}-\frac{x^{3}+3 x^{2} y}{6}+\cdots=x+y+x^{2}-y^{2}+\frac{1}{3} x^{3}-x^{2} y+\cdots \\
& a_{11}=0, a_{2,1}=\frac{1}{3} \neq 0, a_{3,0}=-1 \neq 0
\end{aligned}
$$

(4) $\sum_{n=0}^{\infty} \underbrace{\frac{1}{(n+5)}\left(\frac{z+2 i}{1+2 i}\right)^{n}}_{a_{n}}$

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n}{n+5}\left|\frac{z+2 i}{1+2 i}\right|=\frac{n}{n+5} \frac{|z+2 i|}{\sqrt{5}} \rightarrow \frac{|z+2 i|}{\sqrt{5}}
$$

By the Ratio test: $\begin{cases}|z+2 i|<\sqrt{5} & \text { the series } \\ |z+2 i|>\sqrt{5} & \text { diverges }\end{cases}$
$\Rightarrow R=\sqrt{5}$ and our series is centered at $-2 i$

$$
f_{x}=x^{3}-x, \quad f_{y}=y^{3}+y
$$

- critical points: $f_{x}=0, x^{3}-x=0\left\{\begin{array}{l}x=0 \\ x= \pm 1\end{array}\right.$

$$
f_{y}=0, y^{3}+y=0, \quad y=0
$$

Thus: $(0,0),(1,0),(-1,0)$
Second derivatives: $f_{x x}=3 x^{2}-1, f_{y y}=3 y^{2}+1, f_{x y}=0$
$(0,0), f_{x x}=-1, f_{y y}=1$, saddle put

$$
(1,0), f_{x x}=2, f_{y y}=1, f_{x x}>0, f_{y y}>0,
$$

$$
f_{x x} f_{y y}>f_{x y}^{2}
$$

\Rightarrow min
$(-1,0), f_{x x}=2, f_{y y}=1$, same, min
local minima: $(1,0),(-1,0)$. Note, they are also global minima $f(1,0)=f(-1,0)$

