
Physics 7B

UC Berkeley

Fall 2020

7B Lectures 2 & 3 Final Solutions



Consider the conducting sphere of radius R and charge Q0 shown in the figure below.
The conducting sphere is located in the interior of a spherical shell of internal radius R1

and external radius R2, R2 > R1. The inside of the spherical shell has a charge Q = −Q0/2,

whose charge distribution obeys the following rule ρ(r) = Ar.
Find:

(a) (5 pts.) The value of the constant A.

Solution: To find the constant A, we need to use the self-consistency equation

Qshell =

∫
dr3ρ(r) (2pts.) (1)

Now we plug in Qshell = −Q0/2 and ρ(r) = Ar,

−1

2
Q0 = 4π

∫ R2

R1

Arr2dr = πA
(
R4

2 −R4
1

)
(2pts.) (2)

Finally we can write A as

A = − Q0

2π (R4
2 −R4

1)
(1pt.) (3)

(b) (5 pts.) The electric field as a function of distance from the center of the conducting
sphere.

Solution: We can use Gauss’s law to find the electric field everywhere,∫
E · dA =

Qenv

ϵ0
(1pt.) (4)

where we assumed spherical symmetry in the second equality. Inside the conducting
sphere, there is no charge,

Er<R = 0 (1pt.) (5)

Between the sphere and the shell, we have charge Q0 on the surface of the conducting
sphere,

ER<r<R1 =
Q0

4πϵ0r2
r̂ (0.5pt.) (6)

Inside the shell, we have both charge Q0 on the sphere and those ρ(r) = Ar inside the
shell,

ER1<r<R2 =
1

4πϵ0r2

(
Q0 + 4π

∫ r

0

Ar′r′2dr′
)
r̂ =

1

4πϵ0r2
(
Q0 + πA(r4 −R4

1)
)
r̂ (7)

=
Q0

4πϵ0r2

(
1− 1

2

r4 −R4
1

R4
2 −R4

1

)
r̂ (2pt.) (8)
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Finally, outside the shell, the total charge inside is just Q0/2,

Er>R2 =
Q0

8πϵ0r2
r̂ (0.5pt.) (9)

Missing the direction will result in 1 pt. off.

(c) (5 pts.) Consider a point like particle of charge q, mass m located at a distance
R3 > R2 from the center of the sphere. If the particle is moving with initial velocity
v0, directed toward the center of the sphere, find the minimum value of v0 that will
allow the particle to reach the center of the sphere.

Solution: The minimum value of v0 is determined by energy conservation KE = PE,

1

2
mv20 = q∆V (1pt.) (10)

where ∆U = q∆V is the potential energy difference the particle has to overcome. Now
we integrate from R3 all the way down to 0 to find the potential difference ∆V ,

∆V =

∫ R3

0

E · dr = ∆Vr<R +∆VR<r<R1 +∆VR1<r<R2 +∆VR2<r<R3 (0.5pt.)

(11)

where

∆Vr<R =

∫ R

0

Er<Rdr = 0 (0.5pt.) (12)

∆VR<r<R1 =

∫ R1

R

ER<r<R1dr =
Q0

4πϵ0

∫ R1

R

dr

r2
=

Q0

4πϵ0

(
1

R
− 1

R1

)
(0.5pt.) (13)

∆VR2<r<R3 =

∫ R3

R2

Er>R2dr =
Q0

8πϵ0

∫ R3

R2

dr

r2
=

Q0

8πϵ0

(
1

R2

− 1

R3

)
(0.5pt.) (14)

∆VR1<r<R2 =

∫ R2

R1

ER1<r<R2dr =
Q0

4πϵ0

∫ R2

R1

(
1

r2
− 1

2r2
r4 −R4

1

R4
2 −R4

1

)
dr (15)

=
Q0

4πϵ0

(
− R1 +R2

3 (R2
1 +R2

2)
− 1

3(R1 +R2)
+

1

R1

− 1

2R2

)
(1.5pts.) (16)

It is ok to not simplify the formula and write

∆VR1<r<R2 =
Q0

4πϵ0

R4
1

(
1
R1

− 1
R2

)
− 1

3
(R3

2 −R3
1)

R4
2 −R4

1

+
1

R1

− 1

R2

 (17)



Now we can put everything together and find

∆V =
Q0

4πϵ0

(
1

R
− R1 +R2

3 (R2
1 +R2

2)
− 1

3(R1 +R2)
− 1

2R3

)
(18)

=⇒ v0 =

√
2q∆V

m
=

√
2q

m

√
Q0

4πϵ0

(
1

R
− R1 +R2

3 (R2
1 +R2

2)
− 1

3(R1 +R2)
− 1

2R3

)
(0.5pt.)

(19)



Problem 2:

a. (4 pts) Since the shaded region has uniform charge density, the charge density is
simply

ρ =
Q

V
, (1 point)

where Q is the total charge given by Gauss’s law∫
E · da = φ =

Q

ε0
→ Q = ε0φ, (1 point)

and the volume is given by the volume of the large sphere minus the volume of the
two cavities

V =
4π

3

[
R3 − 2R3

1

]
. (1 point)

Putting this together,

ρ =
3ε0φ

4π [R3 − 2R3
1]
. (1 point)

b. (6 pts) To obtain the electric field, along the z axis, we must use the principle
of superposition to calculate the electric field due to the uniform sphere of radius
R and charge density ρ and the two cavities of radius R1 and charge density −ρ.
Mathematically,

Etot = Es + Ecl + Ecr, (2 point)

where we must remember that these are vector quantities.

For a > 1, from application of Gauss’s law we obtain

Es(z) =
ρ

3ε0

[
R3

z2

]
ẑ

Ecl(rl) = − ρ

3ε0

[
R3

1

r2l

]
r̂l

Ecr(rr) = − ρ

3ε0

[
R3

1

r2r

]
r̂r, (1 point)



where rl and rr refer to the radial vectors centered on the left and right cavities
respectively and ending on the point z = aR. They both have magnitude r =√
z2 + d2. Adding these vectors and noting that by symmetry only components

along ẑ don’t cancel,

Ecl + Ecr = 2Ecl cos θẑ = 2Ecl
z

rl
ẑ (1 point)

→ Ea>1
tot =

[
Es + 2Ecl

z

rl

]
ẑ

=
ρ

3ε0

[
R3

z2
− 2R3

1z

r3

]
ẑ

=
ρ

3ε0

[
R

a2
− 2aR3

1R

((aR)2 + d2)3/2

]
ẑ

=
φR

4π [R3 − 2R3
1]

[
1

a2
− 2aR3

1

((aR)2 + d2)3/2

]
ẑ. (0.5 point)

For a < 1, Ecl and Ecr are the same as above since all point along the z axis lie
outside the cavities, however now Gauss’s law yields

Es(z) =
ρ

3ε0
zẑ. (1 point)

With this replacement, the total field is given by

Ea<1
tot =

ρ

3ε0

[
z − 2R3

1z

r3

]
ẑ

=
φaR

4π [R3 − 2R3
1]

[
1− 2R3

1

((aR)2 + d2)3/2

]
ẑ. (0.5 point)

Alternatively, this problem can be solved by direct integration using the Coulomb
law, for which credit will be given as follows:

Etot = Es + Ecl + Ecr, (2 point)

Ea>1
tot =

1

4πε0

∫ R

0

drρ4πr2
1

(aR)2
− 2

4πε0

4
3
πR3

1ρaR

((aR)2 + d2)3/2
(2 point)

Ea<1
tot =

1

4πε0

∫ aR

0

drρ4πr2
1

(aR)2
− 2

4πε0

4
3
πR3

1ρaR

((aR)2 + d2)3/2
(2 point)

c. (5 pts) Taking V = 0 at z = ∞, the electric potential at the surface of the sphere
is given by integrating over the electric field for a > 1 with magnitude E(z)

V = −
∫ z=R

z=∞
E · dl (2 point)

= −
∫ R

∞
E(z)dz (1 point)

= − ρ

3ε0

∫ R

∞

[
R3

z2
− 2R3

1z

(z2 + d2)3/2

]
dz (1 point)

=
φ

4π [R3 − 2R3
1]

[
R2 − 2R3

1√
R2 + d2

]
(1 point)



Problem 3 

1 Solution

Part a) Find the magnetic field generated by the infinite sheet.
Use Ampere’s law: ∫

~B · d~l = µ0Ienc (1)

By symmetry, B cannot depend on x or z. Draw square of side l around the
sheet. Also by the symmetry of the problem only the top and bottom terms
of the path integral contribute. By the right hand rule, the direction of the
magnetic field due to a current going into the page is clockwise.

∫
top

~B · d~l +

∫
bottom

~B · d~l +

∫
sides

~B · d~l = Bl +Bl + 0 = 2Bl = µ0Ienc (2)

The current enclosed is:

Ienc = Jsl (3)

So the magnetic field is:

B =
µ0Jsl

2l
=
µ0Js

2
(4)



It points to the right above the sheet and to the left below the sheet.
Part b Find the force per unit length exerted on the wire.
The force on the wire is the magnetic force due to the magnetic field produced

by the sheet of current.

~F = if~l × ~B =
if lµ0Js

2
(−ŷ) (5)

So the force per length is:

~F

l
=
µ0ifJs

2
(−ŷ) (6)

The direction of the force was found using the right hand rule for the force
exerted by the magnetic field on top of the sheet.

Part c) Find the distance y above the infinite sheet where the total magnetic
field is zero.

The magnetic field is zero when the magnetic field generated by the current
in the wire cancels out the magnetic field produced by the current density in
the sheet.

The magnetic field generated by the wire is:

Bw =
ifµ0

2πr
(7)

Where r is the distance from the wire.
So the distance y can be found by equating the two fields:

B = Bw →
ifµ0

2πy
=
µ0Js

2
→ y =

if
πJs

(8)
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Problem 5 - Solution

A metallic rod of length L can slide right and left on two conducting tracks of a circuit as shown in the figure below.
The rod moves with velocity v in the presence of a magnetic field B. The field B is generated by an infinitely long
vertical wire placed at a distance a from the circuit. A constant current I passes through the wire.

The rod and the tracks of the circuit have a resistance R. Neglect the friction between the rod and the track
and the inductance of the circuit. At t = 0 the rod is located on the left side of the circuit at a distance a from the
infinitely long wire. The rod moves with constant velocity v.

a) (6pts)

Find the direction and magnitude of the current in the rod at time T .

Let ẑ be the unit vector pointing out of the page and x̂ be the unit vector pointing to the right, the direction of motion
of the rod. The magnetic field produced by the wire at a position rx̂ is:

B =− µ0I

2πr
ẑ (1)

That is, pointing into the page. For our purposes, r = a + x(t) where x(t) = vt is the distance of the rod from its starting
position. At a time t, then, the flux through the loop is given by:

Φ =− L
∫ x(t)

0

µ0I

2π(a+ x′)
dx′ =

µ0I

2π
ln

a

a+ x(t)
(2)

where x(t) = vt as before. Faraday’s law then gives the induced EMF as:

E =− dΦ

dt
=

µ0ILv

2π(a+ vt)
(3)

The current induced in the wire is then given by |E| /R by Ohm’s law:

Iinduced(T ) =
µ0ILv

2πR(a+ vT )
(4)

The direction of this current can be found by Lenz’s law – the induced current should create a magnetic field opposing the 
change in flux. The flux increases in the −ẑ direction as the rod moves to the right, so the induced field should be in the +ẑ 
direction. Using the right hand rule, we conclude that the induced current will be upward in the rod, parallel to the 
current in the infinite wire, counter-clockwise around the circuit formed by the rod and the tracks.



b) (4pts)

Find the total energy dissipated in the resistance of the circuit at time T .

The power (rate of energy change) dissipated by a resistor of resistance R with a current I flowing through it is P = I2R.
In our case, then:

P (t) =
dE

dt
=Iinduced(t)2R =

µ2
0I

2L2v2

4π2R(a+ vt)2
(5)

The total energy dissipated is then the integral of this:

E(T ) =

∫ T

0

µ2
0I

2L2v2

4π2R(a+ vt)2
dt (6)

=⇒ E(T ) =
µ2
0I

2L2v2

4π2Ra(a+ vT )
T (7)

c) (5pts)

Find an expression for the force required to maintain the uniform motion.

The magnetic field from the infinite wire will exert a force on the induced current:

F(t) = LIinduced(t)×B(vt) =(−x̂)
µ2
0I

2L2v

4π2R(a+ vt)2
(8)

We need an equal and opposite force Fu to maintain uniform motion:

Fu(t) = x̂
µ2
0I

2L2v

4π2R(a+ vt)2
(9)

The energy dissipated by the resistor will be replaced by this force, so that the kinetic energy of the rod stays constant.
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Problem 6

a. By Faraday’s Law

i = − 1

R

dΦB

dt

1

=
µ0nI(0)πa2 cos θ

Rτ

3

in the positive φ̂ direction 1

b.

Btot =
µ0nI(0)t

τ
ẑ− µ0i

2a
cos θẑ− µ0i

2a
sin θx̂

2+2+2

c.
A = πa2(cos θẑ + sin θx̂)

µ = iA

τ = µ×Btot

1

=
µ2
0n

2I(0)2π2a4 cos θ sin θ

Rτ2
ŷ

3

1



Problem 7 Solution

(a) We first note that the pressure balances the elastic force:

PA = k∆x⇒ P =
k∆x

A
.

The temperature is then given by the ideal gas law,

PV = nRT ⇒ T =
PV

nR
.

The volume is V
2 , n = 1, and we plug in our answer for the pressure to get

T =
k∆xV

2AR
.

(b) After a long time, the two sides of the box will have equal temperature and number density and therefore
equal pressure. Thus, the spring must be in its equilibrium position and exert no force. We then note
that the total change in energy (the change in internal energy of the gas plus the change in elastic
energy of the spring) must be zero because the container is adiabatic and does no work as a whole:

∆Eint +

(
1

2
k (0)

2 − 1

2
k∆x2

)
= 0⇒ ∆Eint =

1

2
k∆x2.

(c) To find the final temperature, we use the change in internal energy:

∆Eint =
3

2
nR∆T ⇒ T =

k∆xV

2AR
+

2

3

∆Eint

nR
=

k∆x

R

(
∆x

3
+

V

2A

)
.

The final pressure is simply given by the ideal gas law,

P =
nRT

V
= k∆x

(
∆x

3V
+

1

2A

)
.

(d) For this problem, we note that entropy is a function of state. We then find a reversible process that
leads us to the same final macrostate as the process in the problem and compute ∆S =

∫
dQ
T for that

reversible process. In other words, we want the change in entropy for a reversible process with

Volume:
V

2
→ V

Pressure:
k∆x

A
→ k∆x

(
∆x

3V
+

1

2A

)
Temperature:

k∆xV

2AR
→ k∆x

R

(
∆x

3
+

V

2A

)
.

There are many ways to do this. We will break this into two processes: isothermal expansion and
isovolumetric heating. The isothermal expansion is

Volume:
V

2
→ V

Pressure:
k∆x

A
→ k∆x

2A

Temperature:
k∆xV

2AR
→ k∆xV

2AR
.



The isovolumetric heating is

Volume: V → V

Pressure:
k∆x

2A
→ k∆x

(
∆x

3V
+

1

2A

)
Temperature:

k∆xV

2AR
→ k∆x

R

(
∆x

3
+

V

2A

)
.

We will now compute the entropy change for these processes. Starting with the isothermal expansion,
we have ∆U = Q−W = 0⇒ Q = W . Therefore,

∆S =
Q

T
=

W

T
=

1

T

∫
P (V ′) dV ′ =

1

T

∫
nRT

V ′ dV ′ = R

∫ V

V
2

dV ′

V ′ = R ln 2.

For the isovolumetric heating, dQ = 3
2nRdT = 3

2RdT for n = 1. Therefore,

∆S =

∫
dQ

T
=

∫
3

2
R
dT

T
=

3

2
R

∫ k∆x
R ( ∆x

3 + V
2A )

k∆xV
2AR

dT

T
=

3

2
R ln

(
1 +

2A∆x

3V

)
.

We then sum the two changes in entropy, obtaining

∆S = R

(
ln 2 +

3

2
ln

(
1 +

2A∆x

3V

))
.
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