
Optional. Mark along the line to show your feelings Before exam: [____________________].
 on the spectrum between and . After exam: [____________________].

UC Berkeley – Computer Science
CS61B: Data Structures

Midterm #2, Fall 2020

This test has 8 questions worth a total of 960 points, and is to be completed in 130 minutes. The exam is
closed book, except that you are allowed to use unlimited written notes. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write the statement
out below in the blank provided and sign your name. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

 Signature: ___________________________

Points # Points
1 55 5 60
2 60 6 150
3 50 7 175
4 230 8 180
 TOTAL 960

Name: __________________________

SID: ___________________________

Class ID #_____: fa20-s_____

 UC BERKELEY

 2

1. Heap Operations (55 points)

a) (20 points). Given the min-heap to the left below, suppose we call insert(0). The resulting min-heap
will have 9 elements, as shown to the right below. What numbers are in spots a-d?

(a) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(b) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(c) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(d) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8

b) (35 points) Given the same initial min-heap from before (redrawn to the left below), suppose we
call removeMin three times. The resulting min-heap will have five elements, as shown to the right
below. What number is in each spot?

(a) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(b) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(c) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(d) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8
(e) ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8

CS61B MIDTERM 2, FALL 2020

 3

2. Trie Operations (60 points). Given the Trie below, answer the following questions. Recall
that isKey is true for blue nodes and isKey is false for white nodes.

a) (15 points) If we call keysWithprefix("su"), what keys will get returned? Recall that
keysWithPrefix finds all keys with the given prefix.

□ sun □ chin □ sued □ goal □ sue □ sunn □ chair □ sunny □ n □ y □ e □ d

b) (15 points) What key, when added, creates the fewest nodes? If multiple keys produce the minimum,
select all that apply.

□ goals □ in □ goat □ soccer □ chain □ cheese □ at □ camel

c) (30 points) Suppose we add the function shortestPrefixOf that accepts a String s and returns the
shortest key in the Trie that is a prefix of s. Calling shortestPrefixOf("goalie") on the Trie would
return "goal". A string is a prefix of itself, e.g. calling shortestPrefixOf("goal") would return "goal".
Assume shortestPrefixOf has been implemented correctly and as efficiently as possible. By efficient,
we mean that it traverses no more nodes than necessary. What String s below would maximize the
number of nodes needed to be traversed? If multiple words produce the maximum, select all that apply.

□ sun □ sunnyday □ sunny □ chin □ sue □ goal □ sued □ sunn □ chair □ chairlift

 UC BERKELEY

 4

3. Heap Iterator (50 points). Suppose we have an implementation of the MinPQ interface from lecture
given below. This specific implementation only allows Integer items. Assume the priority of an Integer is
itself. You should not assume that XMinPQ uses a heap, i.e. the underlying implementation is unknown
and not provided.

public class XMinPQ implements MinPQ<Integer>, Iterable<Integer> {
 public void add(Integer x) {...}
 public Integer getSmallest() {...}
 public Integer removeSmallest() {...}
 public int size() {...}
 public Iterator<Integer> iterator() {
 return new XIterator();
 }
 private class XIterator implements Iterator<Integer> {
 public int x;
 public XIterator() {
 x = removeSmallest();
 }
 public boolean hasNext() {
 return x > 0;
 }
 public Integer next() {
 x = x - 1;
 return removeSmallest();
 }
 }
}
What is the result of the code below? Reminder: The XMinPQ does not necessarily use a heap, i.e.
we know that it implements the priority queue abstract data type, but we do not know how.

 public static void main(String[] args) {
 XMinPQ mpq = new XMinPQ();
 mpq.add(4);
 mpq.add(1);
 mpq.add(5);
 mpq.add(2);
 mpq.add(6);
 mpq.add(3);
 mpq.add(8);
 mpq.add(7);
 for (int i: mpq) {
 System.out.print(i + " "); // line 1
 }
 System.out.println();
 for (int i: mpq) {
 System.out.print(i + " "); // line 2
 }

}
Line 1: __
Line 2: __

CS61B MIDTERM 2, FALL 2020

 5

4. Asymptotics. (230 points). Consider the code below. For each, give the worst case runtime in Theta
notation as a function of N.

a) loops (30 points)

public static void loops(int N) {
 for (int i = 1; i < 2; i += 1) {
 for (int j = 2; j < 4; j = j * j) {
 for (int k = 3; k < N; k = k * 2) {
 for (int m = 4; m < 8; m = m * m * m) {
 System.out.println("hello");
 }
 }
 }
 }
}

○ Θ(1) ○ Θ(log log N) ○ Θ((log N)^2) ○ Θ(log N) ○ Θ(N) ○ Θ(N log N)
○ Θ(N^2) ○ Θ(N^2 log N) ○ Θ(N^3) ○ Θ(N^3 log N) ○ Θ(N^4) ○ Θ(N^4 log N)
○ Worse than Θ(N^4 log N) ○ Never terminates (infinite loop)

b) addToSet (40 points)

public static void addToSet(int N) {
 HashSet<RandomThing> m = new HashSet<>();
 for (int i = 0; i < N; i += 1) {
 // getNextRandomThing takes constant time
 RandomThing rt = getNextRandomThing();
 m.add(rt);
 }
}
Reminder! Throughout all 6 parts (a through f) of this asymptotics problem, you are giving the worst
case in theta notation.

○ Θ(1) ○ Θ(log log N) ○ Θ((log N)^2) ○ Θ(log N) ○ Θ(N) ○ Θ(N log N)
○ Θ(N^2) ○ Θ(N^2 log N) ○ Θ(N^3) ○ Θ(N^3 log N) ○ Θ(N^4) ○ Θ(N^4 log N)
○ Worse than Θ(N^4 log N) ○ Never terminates (infinite loop)

 UC BERKELEY

 6

c) nestedSum(nestedSum(x)) (40 points)

public static List<Integer> nestedSum(List<Integer> x) {

List<Integer> newInts = new ArrayList<>();

 for (int i : x) {
 for (int j : x) {
 newInts.add(i + j);
 }
 }
 return newInts;
}

List<Integer> x = getIntegers(); // getIntegers returns a List of Integers
int N = x.size();

// Give the runtime for the following call to nestedSum(nestedSum(x))
List<Integer> x2 = nestedSum(nestedSum(x));

○ Θ(1) ○ Θ(log log N) ○ Θ((log N)^2) ○ Θ(log N) ○ Θ(N) ○ Θ(N log N)
○ Θ(N^2) ○ Θ(N^2 log N) ○ Θ(N^3) ○ Θ(N^3 log N) ○ Θ(N^4) ○ Θ(N^4 log N)
○ Worse than Θ(N^4 log N) ○ Never terminates (infinite loop)

d) g(N, 1) (40 points)

private static void g(int N, int ss) {
 if (ss > N) {
 return;
 }

 for (int i = 0; i < N; i += ss) {
 System.out.print(i + " ");
 }

 System.out.println();
 g(N, ss * 2);
}

// Give the runtime for the following call:
g(N, 1);

○ Θ(1) ○ Θ(log log N) ○ Θ((log N)^2) ○ Θ(log N) ○ Θ(N) ○ Θ(N log N)
○ Θ(N^2) ○ Θ(N^2 log N) ○ Θ(N^3) ○ Θ(N^3 log N) ○ Θ(N^4) ○ Θ(N^4 log N)
○ Worse than Θ(N^4 log N) ○ Never terminates (infinite loop)

CS61B MIDTERM 2, FALL 2020

 7

e) g2(N, 1) (40 points)

private static void g2(int N, int ss) {
 if (ss > N) {
 return;
 }

 for (int i = 0; i < N; i += ss) {
 System.out.print(i + " ");
 }

 System.out.println();
 g2(N, ss * 2);
 g2(N, ss * 2);
}

// Give the runtime for the following call:
g2(N, 1);

○ Θ(1) ○ Θ(log log N) ○ Θ((log N)^2) ○ Θ(log N) ○ Θ(N) ○ Θ(N log N)
○ Θ(N^2) ○ Θ(N^2 log N) ○ Θ(N^3) ○ Θ(N^3 log N) ○ Θ(N^4) ○ Θ(N^4 log N)
○ Worse than Θ(N^4 log N) ○ Never terminates (infinite loop)

f) func (40 points)

public void func(int N) {
 int Q = 0;
 for (int i = 1; i < N; i *= 3) {
 Q += 1;
 }
 disco(Q);
}
public void disco(int Q) {
 if (Q == 0) {
 return;
 }
 for (int i = 0; i < Q; i += 1) {
 System.out.println("hi");
 }
 disco(Q - 1);
}

○ Θ(1) ○ Θ(log log N) ○ Θ((log N)^2) ○ Θ(log N) ○ Θ(N) ○ Θ(N log N)
○ Θ(N^2) ○ Θ(N^2 log N) ○ Θ(N^3) ○ Θ(N^3 log N) ○ Θ(N^4) ○ Θ(N^4 log N)
○ Worse than Θ(N^4 log N) ○ Never terminates (infinite loop)

 UC BERKELEY

 8

5. Compress (60 Points)

Consider the UnionFind class as covered in lab.

public class UnionFind {

private int[] parent;
public int sizeOf(int v1) {
 int root = find(v1);
 return -1 * parent[root];
}
public boolean isConnected(int v1, int v2) {
 return find(v1) == find(v2);
}
public void connect(int v1, int v2) { ... }
// Path compression is NOT implemented
public int find(int v1) { ... }

}

Suppose we add the method compress to the UnionFind class, which compresses the height of each tree
to 1 by connecting every vertex to its respective root. For instance, suppose we have the parent array
below

{-4, 0, 0, 2, -4, 4, 4, 6}
If we call compress(), the parent array would become

{-4, 0, 0, 0, -4, 4, 4, 4}
as vertices 3 and 7 connect to their respective roots. A visualization of this process can be seen below:

Note that the values of vertices 0 and 4 stay the same because they are roots. Also note that the values of
vertices 1, 2, 5, and 6 happen to stay the same because they are already connected to their respective
roots! Fill in the compress method for the UnionFind class below. Do not change the skeleton
provided. No credit will be given to solutions which do not use the given skeleton, even if correct.

public class UnionFind {
 ...
 public void compress() {
 for (_____________________________) {
 if (__________________________) {
 __________________________;
 }
 }
 }
}

 UC BERKELEY

 10

6. LLRB Insertions (150 points)

We will be using this left learning red-black tree (LLRB) for the following questions.

Recall from lecture and discussion that when we insert items into a LLRB tree, we sometimes need to
perform balance operations. Recall that our balance operations are: rotateRight, rotateLeft,
and colorFlip.

For each of the following prompts, give a single int value which, when inserted into the LLRB above,
causes exactly the requested balance operation to occur. You may only insert int values into the
LLRB tree and only a single balance operation may occur.

If multiple possible values would work, choose the smallest, positive value. If there is no value that
results in the given balance operation occurring by itself, simply write "None" in the answer box.

Your inserted values should result in only a single balance operation. For example, if your value causes
a sequence of rotations or color flips, it is not a valid answer.

Each question is independent. For each sub part, the LLRB tree you're inserting into is the exact,
untouched LLRB you see above.

Reminder: If there are multiple values that could work, give the smallest positive value. That is, if
4 and 5 are both valid answers to a problem, you must give 4 for full credit.

a) (20 points) A single rotateLeft operation. int value to insert:
b) (20 points) A single rotateRight operation. int value to insert:
c) (20 points) A single colorFlip operation. int value to insert:

CS61B MIDTERM 2, FALL 2020

 11

Now consider the corresponding 2-3 tree for the LLRB shown above. Answer the following questions.
The last one is particularly difficult.

d) (30 points) What is the minimum number of values that we
must add to the corresponding 2-3 tree to increase its height?
For this problem, values may be any real value (e.g. 3.6), not
necessarily positive integers.

number of values:

e) (60 points) What is the maximum number of values that we
can add to the corresponding 2-3 tree without increasing its
height? For this problem, values may be any real value (e.g.
3.6), not necessarily positive integers.

number of values:

 UC BERKELEY

 12

7. By The Numbers (175 points). For each scenario below, give the minimum and maximum. If there
is no min or max write "None".

Recall that the height of a tree is the number of links from the root to the farthest leaf, i.e. a tree with 2
nodes has height 1. Recall that the depth of a node in a tree is the number of links from the root to that
node, i.e. the root of a tree has depth 0, its children have depth 1, and so forth. Assume for the entirety of
this problem that duplicates in BSTs are not allowed.

a) (25 points) The number of nodes in a non-empty tree which is both a BST and a max-heap.

Min: __________ Max: __________

b) (25 points) The height of a BST with 7 nodes where the median is the root.

Min: __________ Max: __________

c) (25 points) The height of a WeightedQuickUnion object with 10 items, where all of the objects are
connected.

Min: __________ Max: __________

d) (25 points) The depth of the median value in a heap of 15 objects, none of which are duplicates.

Min: __________ Max: __________

e) (25 points) The depth of the median value in a BST of 15 objects.

Min: __________ Max: __________

f) (25 points) The length of the longest list in a hash table with 10 buckets and 20 items, assuming each
bucket is represented as a list.

Min: __________ Max: __________

g) (25 points) The height of the tallest tree in a hash table with 10 buckets and 7 items, assuming each
bucket is stored as an LLRB.

Min: __________ Max: __________

CS61B MIDTERM 2, FALL 2020

 13

8. Window (180 points)

a) (30 points) Suppose we have a class called Point which represents a point in 2D space. Fill in the
function isInside such that it returns true if the point is inside the window bounded by the given x and y
coordinates. If a point lies exactly on the boundary, then it should be included.
Assume x1 will always be less than or equal to x2 and y1 will always be less than or equal to y2.

public class Point {
 public double x;
 public double y;
 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }
 public boolean isInside(double x1, double x2, double y1, double y2) {

 } // our code is 1 line, yours may be more or fewer
}
For the rest of this problem, we'll consider how we can use a KD-Tree to efficiently find all points in
space that are inside a given window. In part (c), you'll be writing the function List<Points>
window(double x1, double x2, double y1, double y2) which returns all points in the KD-Tree that are
inside the given window. To see an example, suppose we are using the KD-Tree below and
call window(4, 7, 4, 7). The points returned are (5, 5) and (5, 6). Your method should be efficient and
should prune branches that definitely do not contain any points be in the given window.

b) (50 points) Before we dive into the code, let's first understand the process of pruning a bit better.
Using the KDTree above, which branches, if any, can be pruned in the call window(4, 7, 4, 7)? Note if
we prune a branch higher up on a particular subtree, we don't prune the lower branches because we
never consider them, i.e. if (h) can be pruned, (k) and (l) are not pruned. Also note that branches that do
not point to a Node, e.g. (d) can be pruned.
□ (a) □ (b) □ (c) □ (d) □ (e) □ (f) □ (g) □ (h) □ (i) □ (j) □ (k) □ (l)
□ No branches can be pruned

 UC BERKELEY

 14

c) (100 points) Fill in the window function so that it works as described above. You may use
a maximum of 3 lines of code in the body of window. Your implementation for windowHelper must fit
within the skeleton provided. Partial credit will be given to solutions that work correctly, but which do
not prune correctly. If you think it will be useful, you may assume that the isInside method in
the Point class works correctly even if you did not complete part a.

import java.util.*;

private static final boolean HORIZONTAL = false; // we compare x coordinates
private static final boolean VERTICAL = true; // we compare y coordinates
private Node root;

private class Node {
 private Point p;
 private boolean orientation; // true == VERTICAL, false == HORIZONTAL
 private Node leftChild; // also refers to the "down" child
 private Node rightChild; // also refers to the "up" child

 public Node(Point givenP, boolean o) {
 p = givenP;
 orientation = o;
 }
}

 public List<Point> window(double x1, double x2, double y1, double y2) {
 __
 __
 __
 } // You may use a maximum of 3 lines

 private void windowHelper(Node n, List<Point> points, double x1, double x2,
double y1, double y2) {
 if (___________________________) {
 return;
 }
 if (___________________________) {
 ____________________;
 }
 if (___________________________) {
 if (___________________________) {
 ___________________________;
 }
 if (___________________________) {
 ___________________________;
 }
 } else {
 if (___________________________) {
 ___________________________;
 }
 if (___________________________) {
 ___________________________;
 }
 }
 }

