MIDTERM 1 Solurori Fall 2020.

QI
Consider the system.

The cuboid body with feet.

Here N/2 is the force acting on the body from the weighing maduine. Lets find this normal force first.
In equilibrium ~

$$
\underbrace{-P_{\text {atm }} A \hat{z}}_{\text {Top surfaen }}+\underbrace{\operatorname{Patm}(A-2 a) \hat{z}}_{\text {Bottom Surface }}-M g \hat{z}+N \hat{z}=0 \text {. }
$$

$N \frac{\pi}{2}=P_{\text {atm }} 2 a+m g$

The total force oping on the weighing machine Is.

$$
\begin{aligned}
& |\omega|=\underbrace{m g+P_{\text {atm }} 2 a}_{\text {force by body }}+\underbrace{P_{\text {atm }}(A-2 a)}_{\begin{array}{c}
\text { force due to } \\
\text { air pressure }
\end{array}} \\
& |\omega|=
\end{aligned}
$$

$|\omega|$ is independent of a

Qt.

Writing down expression for gage pressure -

$$
\begin{aligned}
& P(z)= \begin{cases}-\rho_{5} g\left(z-z_{T}\right) & z_{7}>z \geqslant z_{54}: \\
-\rho_{5} g\left(z_{54}-z_{T}\right)-\rho_{4} g\left(z-z_{54}\right) & z_{54}>z \geqslant z_{43} \\
-\rho_{5} g\left(z_{54}-z_{T}\right)-\rho_{4} g\left(z_{43}-z_{54}\right) & \end{cases} \\
& -\rho_{3 g}\left(z-z_{43}\right) \quad z_{43}>z \geqslant z_{32} . \\
& -\rho_{0 g}-\rho_{4} g \\
& -\rho_{5} g\left(z_{54}-z_{5}\right)-\rho_{4 g}\left(z_{43}-z_{54}\right) \\
& -\rho_{3 j}\left(z_{32}-z_{43}\right)-\rho_{2} g\left(z-z_{32}\right) \quad z_{32}>z z_{z 21} \\
& -\rho_{5} g\left(z_{54}-2_{7}\right)-\rho_{4} g\left(z_{43}-z_{54}\right)-\rho_{3} g\left(z_{32}-z_{43}\right) . \\
& -\rho_{2}\left(z_{21}-z_{32}\right)-\rho_{1} g\left(z-z_{21}\right) \\
& z_{21}>z \geqslant z_{B}
\end{aligned}
$$

Lets consider the cylinder section ~
Our control volume considered here is the fictitious boundary 1 and 2 , and the metal plate. We are considering the metal plate here because air pressure is acting on both sides. The total pressure inside the plate is P_{-}total $=\mathrm{P}$-glue +P _air

$$
\hat{n}_{1}=\hat{x}
$$

Thus P_gage $=$ P_glue

This section is sussounded by fluid. In equilibrium, we on wake the fore padre on-

$$
\underline{F}_{1}+\underline{E}_{2}+E=0 .
$$

Where E is the force acting on the curved surface.

$$
\begin{aligned}
& I_{1}=\int_{A} P(z) \hat{n}_{1} d A . \\
& R \hat{x} \int_{Z_{B}}^{2 \pi} P(z) d z \\
& F_{2}=\int_{A} P(2) \hat{n}_{2} d A \\
& =R\left(-\sin 30^{\circ} \hat{x}+\cos 30^{\circ} \int_{2_{8}}^{y_{8}} \int_{2}^{2 \pi} P(z) d z\right.
\end{aligned}
$$

$$
\begin{aligned}
\underline{E} & =-\underline{F_{1}}-\underline{E}_{2} \\
& =\left[-R \hat{x}-R\left(-\sin 30^{\circ} \hat{x}+\cos 30^{\circ} \hat{y}\right)\right] \int_{z_{B}}^{2 T} P(2) d z \\
& =\left[-\frac{1}{2} R \hat{x}-R \frac{\sqrt{3}}{2} \hat{y}\right]_{z B}^{2 T} P(z) d z
\end{aligned}
$$

$$
\begin{aligned}
\int_{z_{B}}^{2_{T}} p(z) d z & =\int_{z_{54}}^{z_{T}} p(z) d z+\int_{z_{43}}^{z_{56}} P(z) d z+\int_{z_{32}}^{z_{43}} P(z) d z \\
& \left.+\int_{z_{21}}^{z_{32}} P(z) d z+\int_{z_{B}}^{z_{21}} P(z) d z .-2\right)
\end{aligned}
$$

Notice tho l we use gage pressure since air is exerting pressure on both sides of the cylinder.

$$
\begin{aligned}
\int_{z_{54}}^{2_{T}} p(z) d z & =\int_{z_{54}}^{z_{T}}\left(-\rho_{5 g z}+\rho_{5} g z_{T}\right) d z \\
& =-\rho_{5 g} \frac{z^{2}}{2}+\left.\rho_{5 g z_{T}} z\right|_{z_{54}} ^{2 T} \\
& =-\rho_{5 g} \frac{z_{T}^{2}}{2}+\rho_{5 g z_{T}}^{2}+\rho_{5 g} \frac{z_{54}^{2}}{2}-\rho_{5 g z_{54} z_{T}} \\
& =+\rho_{5 g \frac{z_{T}}{2}}^{2}+\rho_{5 g \frac{254}{2}}^{2}-\rho_{5 g z_{54} z_{T}}
\end{aligned}
$$

$$
\begin{aligned}
\int_{z_{32}}^{z_{32}} P(z) d z= & \sum_{0}-\rho_{5} g\left(z_{54}-z_{T}\right)\left(z_{32}-z_{21}\right)-\rho_{4 g}\left(z_{43}-z_{34}\right) \\
& -\rho_{3 g}\left(z_{32}-z_{43}\right)\left(z_{32}-z_{21}\right)+\rho_{2 g} \frac{\left(z_{32}-z_{21}\right)^{2}}{2}
\end{aligned}
$$

221

$$
\begin{aligned}
\int_{z_{B}}^{z_{21}} P(z) d z= & -\rho_{5 g}\left(z_{54}-z_{T}\right)\left(z_{z_{1}}-z_{B}\right)-\rho_{4} g\left(z_{43}-z_{54}\right)\left(z_{21}-z_{B}\right) \\
& -\rho_{3 g}\left(z_{32}-z_{43}\right)\left(z_{21}-z_{B}\right)-\rho_{2 g}\left(z_{21}-z_{32}\right)\left(z_{21}-z_{B}\right) \\
& +\rho_{1 g} \frac{\left(z_{21}-z_{B}\right)^{2}}{2}
\end{aligned}
$$

Plugging these into (i) \& (2) gives us the force F sipplieal by the glue. Solution algebra on next page
Note.
The force can also be calculated using the unit vector on the curved surface. However, the approach used above is much more gerah and can be used to find force on surface which are much more complicated \& their normal vectors are difficult to find. Such as.
we cen find force on this curved surface using similar

$$
E=\left[-\frac{1}{2} R \hat{x}-R \frac{\sqrt{3}}{2} \hat{y}\right] \int_{\text {Plugging into equation }}^{2 \pi} P(z) d z
$$

$$
\begin{aligned}
& \begin{aligned}
\int_{2 B}^{2 \pi} P(z) d z= & \rho_{5} g \frac{z_{7}^{2}}{2}+\rho_{5} g \frac{z_{54}^{2}}{2}-\rho_{5} g z^{2} 2_{54}+\rho_{5} g^{2-2} \\
& +\rho_{-q} z_{54} z_{43}
\end{aligned} \\
& +\rho_{5} g z_{54} z_{43}-\rho_{5 g} z_{5} 2_{43}-\rho_{5} g z_{54}^{2} \\
& +\rho_{4 g} \frac{z_{54}^{2}}{2}+\rho_{4 g} \frac{z_{43}^{2}}{2}-\rho_{4 g} z_{542} z_{43}-\rho_{5 g} z_{52} z_{43} \\
& +\rho_{5 g} z_{54} z_{32}+\rho_{5 g} z_{54}+\rho_{5 g} z_{1} z_{43} \\
& -\rho_{5 g} z_{1} z_{32}-\rho_{4} g_{43}^{2}+\rho_{4} z_{43} z_{32}+\rho_{4} z_{54} z_{43} \\
& -\rho_{4 g} z_{34} z_{32}+\rho_{3} g_{\frac{243}{2}}^{2}+\rho_{\frac{3 g^{2}}{2}}^{2}-\rho_{3} y^{2} 43 z_{3} \\
& -\rho_{5 g} g z_{54} z_{32}+\rho_{5 g} z_{54} z_{21}+\rho_{5 g} z_{1} z_{32}-\rho_{5 g} z_{12} z_{21} \\
& -\rho_{4} g z_{43} z_{32}+\rho_{4} g z_{43} z_{21}+\rho_{4} g z_{54} z_{32}-\rho_{4} g z_{54} z_{21} \\
& -\rho_{3} g z_{32}^{2}+\rho_{3} g z_{32} z_{21}+\rho_{3} g z_{43} z_{32}-\rho_{3} g z_{13} z_{21} \\
& +\rho_{2} g \frac{z_{32}^{2}}{2}+\rho_{2} g \frac{z_{21}}{2}-\rho_{2} g 232 z_{21} \\
& -\rho_{5 g} z_{54} z_{21}+\rho_{5} g z_{54} z_{B}+\rho_{5 g} z_{T} z_{21}-\rho_{5} g z_{T-} z_{B} \\
& -\rho_{4} g z_{43} z_{21}+\rho_{4} g z_{43} z_{B}+\rho_{4} z_{54} z_{21}-\rho_{4} g z_{54} z_{B} \\
& -\rho_{3 g} g^{2} z_{2} z_{21}+\rho_{3 g z_{32} z_{B}}+\rho_{3 g z_{43} z_{21}}-\rho_{3 g z_{43} z_{B}} \\
& -\rho_{2} g z_{21}^{2}+\rho_{2 g} g z_{21} z_{B}+\rho_{2} g z_{32} z_{21}-\rho_{2} g z_{32} z_{B} \\
& +S_{1} g^{2} \frac{z_{21}}{2}+\rho_{1} g \frac{z_{B}^{2}}{2}-\rho_{1} g z_{z_{1}} z_{B}
\end{aligned}
$$

Using (2)

$$
\begin{aligned}
& \underline{F}_{1}=B_{1}-\underline{F}_{21}-F_{B_{1}} \\
& =\left[\begin{array}{lll}
\rho_{4} g L H^{2} & \frac{3 \sqrt{3}}{32} & \hat{z}
\end{array}\right]-\left[\frac{3}{4} H P_{\text {anim }} L+\rho_{4 g} z_{2} L H \frac{3}{4}\right. \\
& \left.-\rho_{4} g \frac{z_{1}^{2}}{2}-\frac{9}{z_{32}} H^{2} \rho_{4} g L+\frac{3}{4} \rho_{4} g z_{1} H L+\rho_{4} g \frac{z_{1}^{2}}{2}\right] \hat{x} \\
& \text { - }\left[\frac{\sqrt{3}}{4} H L P_{\text {atm }}-\rho_{4} g \frac{\sqrt{3}}{4} H z_{1}+\frac{\sqrt{3}}{4} \rho_{4} g z_{4} H L\right] \sum_{\$}
\end{aligned}
$$

Using (3) -

$$
\begin{aligned}
F_{2} & =\left[\frac{\sqrt{3}}{32} \rho_{2} g H^{2} L\right] \hat{z}+\left[\frac{\sqrt{3}}{4} H L P_{\text {atm }}-\rho_{4} g z_{1}, \frac{\sqrt{3}}{4} H L\right. \\
& \left.+\rho_{4} g z_{4} \frac{\sqrt{3}}{4} H L\right] \hat{z}-\left[\frac{H}{4} L P_{\text {atom }}-\rho_{4} g^{2}, \frac{H}{4} L+\rho_{4} g^{2} z_{4} L\right. \\
& +\rho_{2} g z_{1} \frac{H}{4} L-\rho_{2} g \frac{z_{2}^{2}}{2} L+\rho_{2} z_{2} L+\frac{\left.H^{2} \rho_{2} g L+L \rho_{2} g_{2} \frac{H z}{4}\right] \hat{x}}{l}
\end{aligned}
$$

Using (4)

$$
\begin{aligned}
& \text { Using (4) - } \\
& F_{3}=\left[\frac{3 \sqrt{3}}{32} S_{3} g H^{2} L H_{4}\right] \hat{z}+\left[\frac{\sqrt{3}}{4} H L P_{\text {atm }}+\rho_{3} g z_{1} \frac{\sqrt{3}}{4} H L\right. \\
& \left.-\rho_{3} g H^{2} L \frac{3 \sqrt{3}}{16}\right] \hat{z}+\left[\frac{3}{4} H L P_{\text {atm }}-\rho_{3} g H^{2} \frac{q}{6} \frac{9}{32}\right. \\
& \left.+\rho_{3} g z_{1} H \frac{3}{4}\right] \hat{x}
\end{aligned}
$$

Fluid 3 with density 3 is from $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{z}$ _1

Fluid 1 with density 2 is from $\mathrm{z}=\mathrm{z}$ _1 to $\mathrm{z}=\mathrm{z}$ _B

$$
2=2 B
$$

$$
x=0 .
$$

$Z=24$. Fluid 4 with density 4 is from $\mathrm{z}=\mathrm{z}$ _ 4 to $\mathrm{z}=\mathrm{z} _1$

Fluid 2 with density 2 is from $\mathrm{z}=\mathrm{z}$ _1 to $\mathrm{z}=\mathrm{z}$ _B

ON RHSM

$$
P_{R}(z)= \begin{cases}P_{\text {atm }}-\rho_{4} g\left(z-2_{4}\right) & z_{4} \geqslant 2 \geqslant 2, \\ P_{\text {comm }}-\rho_{4 g}(2,-24)-\rho_{2}\left(z-2_{1}\right) & z_{1} \geqslant 2 \geqslant 2_{B}\end{cases}
$$

ON lues

$$
P_{1}(z)= \begin{cases}P_{\text {atm }}-\rho_{3 g} z & 0 \geqslant z>z_{1} \\ P_{\text {atm }-\rho_{3} g z_{1}-\rho_{1} g(2-21)} & z \geqslant z \geqslant z_{B}\end{cases}
$$

The sum of forces

Where E is the force th of must be supplied by the highs to hex plates in equiltonom.

Consider upper plate triangular control volume is surrounded in fluid 4

Byoyancy blare con be whiten as in

$$
\begin{aligned}
& \underline{B}_{1}=\underline{F}_{1}+\underline{E}_{4}+\underline{F}_{B 1}
\end{aligned}
$$

$$
\begin{align*}
& F_{l 1}=L \hat{x} \int_{-2_{1}}^{-z_{1}+\frac{\sqrt{3}}{2} H \cos 30^{\circ}} P_{\text {atom }}-\rho_{4} g(2-24) d z . \\
& \begin{array}{c}
=L \hat{x}\left[\left(P_{\text {atm }}+\rho \frac{\rho g}{} z_{4}\right)\left(\frac{\sqrt{3}}{2} H \cos 30^{\circ}\right)-\rho_{4 g}\left(\frac{\left(-z_{1}+\frac{\sqrt{3}}{2} H \cos 30^{\circ}\right)^{2}}{2}\right.\right. \\
\left.+\rho_{\text {ur } \frac{z_{1}}{2}}^{2}\right]
\end{array} \\
& F_{B I}=\frac{\sqrt{3}}{2} H \sin 30^{\circ} \mathrm{L}\left(P_{\text {atm }}-\rho_{4 g}(2,-24)\right) \text { z_hat } \\
& \underline{F}_{1}=\underline{B_{1}}-\underline{F_{24}}-\underline{F_{B 1}}
\end{align*}
$$

For lower plate
Here we do a thought experiment that our triangular control volume is surrounded in fluid

$$
\begin{align*}
& \underline{B}_{2}=\underline{F}_{2}+\underline{F_{12}}+\underline{F_{L 2}} \\
& \underline{B}_{2}=\rho_{2} g \frac{1}{2}\left(\frac{H}{2} \cos 60^{\circ}\right)\left(H / 2 \sin 60^{\circ}\right) L \hat{2} . \\
& F_{T 2}=-L \hat{z}\left(\frac{H}{2} \sin 60^{\circ}\right)\left(P_{\text {data }}-\rho_{4 g}(2,-24)\right) \text {. } \\
& \underline{F_{22}} L \hat{x} \int_{-2_{1}-\frac{4}{2} \cos 60^{\circ}}^{-2_{1}} P_{\text {stan }}-\rho_{4 g}\left(z_{1}-24\right)+\rho_{2} g_{21}{ }^{-\rho_{2 g 2}} d z . \\
& =L \hat{x}\left[\left(P_{\text {atm }}-\rho_{\text {mg }}(2,-24)+\rho_{2 g} z_{1}\right)\left(\frac{H}{2} \cos 60^{\circ}\right)\right. \\
& \left.-\rho_{2} g \frac{z_{1}^{2}}{2}+\rho_{2} g\left(\frac{\left(-2,-\frac{H}{2} \cos 60^{\circ}\right.}{2}\right)^{2}\right] \\
& \underline{F_{2}}=\underline{B}_{2}-F_{T 2}-F_{22} \tag{3}
\end{align*}
$$

Consider the upper plate again, but this time with LHS fluid.

$$
\begin{align*}
& F_{3} \downarrow_{-0_{23}}^{F_{T 3}} \\
& \text { Here we do a thought experiment that our } \\
& \text { triangular control volume is surrounded in fluid } \\
& B_{3}=F_{3}+E_{T 3}+E_{R 3} \\
& \underline{B}_{3}=\frac{1}{2}\left(\frac{\sqrt{3}}{2} H \cos 60^{\circ}\right)\left(\frac{\sqrt{3}}{2} H \sin 60^{\circ}\right) L \rho_{3} g \underline{2} \\
& \underline{E}_{T 3}=-L \hat{z}\left(\frac{\sqrt{3}}{2} H \cos 60^{\circ}\right)\left(P_{\text {atm }}-\rho_{3 g}\left(-2,+\frac{\sqrt{3}}{2} H \cos 30^{\circ}\right)\right) \\
& F_{R 3}=-L \hat{x} \int_{-2_{1}}^{-z_{1}+\frac{\sqrt{3}}{2} H \cos 30^{\circ}}\left(r_{\text {ct }}-\rho_{3} g z\right) d z \text {. } \\
& =-L \hat{x}\left[P_{\operatorname{cotm}}\left(\frac{\sqrt{3}}{2} H \cos 30^{\circ}\right)-\rho_{3 g} \frac{\left(-2,+\frac{\sqrt{3}}{2} H \cos 30^{\circ}\right.}{2}\right]^{2} \\
& \left.+\rho_{3 g \frac{z_{1}^{2}}{2}}\right] \\
& \underline{F_{3}}=\underline{B}_{3}-\underline{E}_{3}-\underline{F}_{3} \tag{4}
\end{align*}
$$

Now finely consider lower plat with LHS fluid - Here we do a thought experiment that our triangular control volume is surrounded in fluid 1

$$
\begin{aligned}
& \underline{B}_{4}=\underline{F}_{4}+\underline{F}_{R_{4}}+\underline{F_{B 4}} \\
& F_{B 4}=\left[P_{\text {atm }}-\rho_{3 g 2,}-\rho_{1} g\left(-2,-\frac{H}{2} \cos 60^{\circ}-2_{1}\right)\right] \\
& \left(H / 2 \cos 30^{\circ}\right) L \hat{z} \text {. } \\
& \underline{B}_{4}=1 / 2\left(H / 2 \cos 30^{\circ}\right)\left(\frac{H}{2} \sin 30^{\circ}\right) L \rho_{1} g^{n} \\
& F_{R 4}=-L_{x}^{n} \int_{-2,-\frac{H}{2} \cos 60^{\circ}}^{-2,}\left[P_{a t m}-\rho_{3 g z,}-\rho_{1} g\left(z-z_{1}\right)\right] d z \\
& =-L \hat{x}\left[\left(P_{\text {atm }}-\rho_{3} g z_{1}+\rho_{1} g z_{1}\right)\left(\frac{H}{2} \cos 60^{\circ}\right)\right. \\
& -\rho_{1 g} \frac{z_{1}^{2}}{2}+\rho_{1 g}\left(\frac{-2,-\mu / 2 \cos 60^{\circ}}{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
\underline{F}_{4}=\underline{B_{4}}-\underline{F_{R 4}}-\underline{F_{84}} \tag{5}
\end{equation*}
$$

Plugging values into (1), (2) (3), (4) \& (5), we get the required force from the hinges.

Solution algebra is on next page
Note
The imported thing to node here is that the CV is dipped into the liquid we are considering at the time.

$$
\begin{aligned}
& +\rho_{3} g \frac{z_{43}^{2}}{2}+\frac{\rho}{3 g z_{3}} \\
& -\rho_{2} g \frac{z_{21}^{2}}{2}+\rho_{3} g z_{32}^{2}+\rho_{2} \frac{z_{21}^{2}}{2}+\rho_{1} g \frac{z_{B}^{2}}{2} \\
& +\rho_{5} g z_{\frac{z_{2}}{2}}^{2} \\
& +\rho_{34} g z_{B}-\rho_{5} g z_{32} z_{7} z_{B}+\rho_{4}-\rho_{3} g z_{43} z_{B}-\rho_{4} g z_{34} z_{3} z_{B}+\rho_{2} g z_{21} z_{B} . \\
& -\rho_{2} g z_{32} z_{B} .-\rho_{1} g z_{21} z_{B} .
\end{aligned}
$$

$$
=\rho_{5 g}\left(\frac{z_{T}^{2}}{2}-\frac{2_{54}^{2}}{2}+z_{542}+z_{T} z_{B}\right)+
$$

$$
\operatorname{Sig}_{4 g}\left(\frac{z_{54}^{2}}{2}-\frac{z_{43}^{2}}{2}+z_{43} 2_{B}-z_{54} z_{B}\right)+
$$

$$
S_{3 g}\left(\frac{z_{43}^{2}}{2}-\frac{z_{32}^{2}}{2}+z_{32} z_{B}-z_{43} z_{B}\right)+.
$$

$$
\rho_{2} g\left(-\frac{z_{21}^{2}}{2}+\frac{z_{32}^{2}}{2}+z_{21} z_{B}-z_{32} z_{B}\right)+
$$

$$
\rho_{1} g\left(\frac{z_{11}^{2}}{2}+\frac{z_{B}^{2}}{2}-z_{11}^{2} z_{B}\right)
$$

Thus -

$$
\begin{aligned}
& \underline{E}=\left[-\frac{1}{2} R \hat{x}-\frac{\sqrt{3}}{2} R \hat{y}\right]\left[\rho_{5 g}\left(\frac{z_{1}^{2}}{2}-\frac{z_{s t}^{2}}{2}+z_{54} z_{B}+z_{i} z_{B}\right)\right. \text {. } \\
& +\rho_{4 g}\left(\frac{254}{2}-\frac{243^{2}}{2}+2432_{B}-25428\right)+\rho_{3 g}\left(\frac{243}{2}-\frac{2_{2} 2^{2}}{2}+2322_{3}-2433_{B}\right) \\
& +\rho_{2 g}\left(\frac{z_{32}{ }^{2}}{2}-\frac{z_{2}^{2}}{2}+z_{21} z_{B}-z_{32} z_{B}\right)+\rho_{1 g}\left(\frac{\left(z_{21}-z_{B}\right)^{2}}{2}\right]
\end{aligned}
$$

$U_{\sin }$ (5) .

$$
\begin{aligned}
& F_{4}=\left[\frac{\sqrt{3}}{32} \rho_{1} g H^{2} L\right] \hat{z}-\left[\frac{\sqrt{3}}{4} H L P_{\operatorname{atm}}-\rho_{3} g z_{1} H \frac{\sqrt{3}}{4} L\right. \\
& \left.+\rho_{1} g z_{1} H L \frac{\sqrt{3}}{2}+\rho_{1} g H^{2} L \frac{\sqrt{3}}{16}\right] \hat{z}+\left[\frac{H}{4} L P_{\text {atm }}\right. \\
& \left.-\rho_{3} g z_{1} \frac{H}{4} L+\rho_{1} g z_{1} \frac{H}{4} L+\rho_{1} g \frac{H^{2}}{32} L+\rho_{1}, z_{1} \frac{H}{4} L\right] \hat{x}
\end{aligned}
$$

Using (1)

$$
\begin{aligned}
& E=-F_{1} \bar{x} F_{2}-F_{3}-F_{4} \\
& =\left[-\rho_{4} g L H^{2} \frac{3 \sqrt{3}}{32}+\frac{\sqrt{3}}{4} \text { ALPatm }-\rho_{u} g \frac{\sqrt{3}}{4} H z L+\frac{\sqrt{3}}{4} S_{1}\right. \text { gzathe } \\
& -\frac{\sqrt{3}}{32} \rho_{2 g} H^{2} L-\frac{\sqrt{3}}{4} A L P_{a b o n}+\rho_{4} g z_{1} \frac{\sqrt{3}}{4} H L-\rho_{4} g 2_{4} \text { in } \\
& -\rho_{3} g H^{2} L \frac{3 \sqrt{3}}{32}-\frac{\sqrt{3}}{4} \text { HLParn }_{4}-\rho_{3} \sum_{1} \frac{\sqrt{3}}{4} H L^{4} \text {. } \\
& +\rho_{3} g H^{2} L \frac{3 \sqrt{3}}{16}-\frac{\sqrt{3}}{32} \rho_{1} g H^{2} L+\frac{\sqrt{3}}{4} H L \text { Patm. } \\
& \left.-\rho_{3} g z \cdot H \frac{\sqrt{3}}{4} L+\rho_{1} g_{1} H L \frac{\sqrt{3}}{2}+\rho_{1} g H^{2} L \frac{\sqrt{3}}{16}\right] z^{n} \\
& +\left[\frac{3}{4} H / P_{a d m}+\frac{3}{4} \beta_{4} g^{-} z_{4} L H-\frac{9}{32} H^{2} \rho_{4 g L}+\frac{3}{4} \rho_{4} g z / H L\right\} \\
& +\frac{H}{4} \text { LPatr - } \rho_{4} g z_{1}^{\prime} \frac{H L}{4}+\rho_{4} g z_{4} \frac{H L}{4}+\rho_{1} g_{2} \frac{H L}{4}+\frac{H^{2} \rho_{2 g^{2}}}{32} \\
& +\frac{\rho_{2} g H_{2}, L}{4} \times \frac{3}{4} H C P d o m+\frac{9}{32} \rho_{3 g} H^{2} 4-\rho_{3} g z_{1} H L \frac{3}{4} \\
& \text { - } \left.\frac{H}{4}<P_{\text {atm }}+\rho_{3} g^{\prime} / L \frac{H}{4}-\rho_{1} g 2_{1} \frac{H L}{4}-S_{1} g H^{2} L-\rho_{1} g z_{1} \frac{H L}{4}\right] \text { x }
\end{aligned}
$$

$$
\begin{aligned}
E= & -\rho_{4} g L H^{2} \frac{3 \sqrt{3}}{32}-\rho_{3} g_{2} H L \frac{\sqrt{3}}{4}-\rho_{3} g H^{2} L \frac{3 \sqrt{3}}{32} \\
& +\rho_{3} g H^{2} L \frac{3 \sqrt{3}}{16}-\rho_{3} g z_{1} H L \frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{32} \rho_{\cdot} g^{2} L \\
& \left.-\frac{\sqrt{3}}{32} \rho_{1} g H^{2} L+\rho_{1} g z_{1} H L \frac{\sqrt{3}}{2}+\rho_{1} g H^{2} L \frac{\sqrt{3}}{16}\right]^{\hat{2}} \\
+ & {\left[\rho_{4} g z_{4} H L-\frac{9}{32} \rho_{4} g L H^{2}+\frac{1}{2} \rho_{4} g_{2} L H .\right.} \\
& +\frac{9}{32} \rho_{3} g H^{2} L-\frac{1}{2} \rho_{3} g_{2} L H++\frac{1}{2} \rho_{2} g z_{1} H L \\
& \left.-\rho_{1} g_{2, H} H L \frac{1}{2}-\frac{1}{32} \rho_{1} g H^{2} L\right] \hat{x}
\end{aligned}
$$

