Math 1B — UCB, Fall 2019 - M. Christ
 Midterm Exam 1 Solutions

There were two versions of the exam. These are solutions to version A.
(1a) Evaluate $\int \sec ^{7}(x) \tan ^{3}(x) d x$
Solution. Substitute $u=\sec (x)$ and $d u=\tan (x) \sec (x)$.

$$
\begin{aligned}
& =\int \sec ^{7}(x)\left(\sec ^{2}(x)-1\right) \tan (x) d x \\
& =\int \sec ^{6}(x)\left(\sec ^{2}(x)-1\right) \sec (x) \tan (x) d x \\
& =\int u^{6}\left(u^{2}-1\right) d u \\
& =\int\left(u^{8}-u^{6}\right) d u \\
& =\frac{1}{9} u^{9}-\frac{1}{7} u^{7}+C \\
& =\frac{1}{9} \sec ^{9}(x)-\frac{1}{7} \sec ^{7}(x)+C
\end{aligned}
$$

(1b) $\int x^{1 / 2} \ln (x) d x$
Solution. IBP:

$$
\begin{aligned}
& =\frac{2}{3} x^{3 / 2} \ln (x)-\frac{2}{3} \int x^{3 / 2} x^{-1} d x \\
& =\frac{2}{3} x^{3 / 2} \ln (x)-\frac{2}{3} \int x^{1 / 2} d x \\
& =\frac{2}{3} x^{3 / 2} \ln (x)-\frac{4}{9} x^{3 / 2}+C
\end{aligned}
$$

Alternative solution. Substitute $x=u^{2}$ to get

$$
\int u \ln \left(u^{2}\right) 2 u d u=4 \int u^{2} \ln (u) d u
$$

IBP to get

$$
\begin{aligned}
& =\frac{4}{3} u^{3} \ln (u)-\frac{4}{3} \int u^{3} u^{-1} d u \\
& =\frac{4}{3} u^{3} \ln (u)-\frac{4}{9} u^{3}+C \\
& =\frac{4}{3} x^{3 / 2} \ln \left(x^{1 / 2}\right)-\frac{4}{9} x^{3 / 2}+C \\
& =\frac{2}{3} x^{3 / 2} \ln (x)-\frac{4}{9} x^{3 / 2}+C .
\end{aligned}
$$

(1c) $\int x^{-3}\left(x^{2}-1\right)^{-1 / 2} d x$
Solution. Substitute $x=\sec (\theta)$ with $\theta=\operatorname{arcsec}(x)$. Then $d x=\sec (\theta) \tan (\theta) d \theta$ and we obtain

$$
\begin{aligned}
& =\int \sec (\theta)^{-3}\left(\sec ^{2}(\theta)-1\right)^{-1 / 2} \sec (\theta) \tan (\theta) d \theta \\
& =\int \sec (\theta)^{-3} \tan (\theta)^{-1} \sec (\theta) \tan (\theta) d \theta \\
& =\int \sec (\theta)^{-2} d \theta \\
& =\int \cos ^{2}(\theta) d \theta \\
& =\int \frac{1}{2}(1+\cos (2 \theta)) d \theta \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta) d \theta \\
& =\frac{1}{2} \theta+\frac{1}{2} \sin (\theta) \cos (\theta) d \theta
\end{aligned}
$$

Now $\cos (\theta)=x^{-1}$ while $\sin (\theta)$ has the same sign as θ and satisfies $\sin ^{2}(\theta)=1-$ $\cos ^{2}(\theta)=1-x^{-2}=\frac{x^{2}-1}{x^{2}}$ so that

$$
\sin (\theta)=x^{-1} \sqrt{x^{2}-1}
$$

The final answer is

$$
\frac{1}{2} \operatorname{arcsec}(x)+\frac{1}{2} x^{-2}\left(x^{2}-1\right)^{1 / 2}+C
$$

(2a) Indicate the form of the partial fractions decomposition of $\frac{x^{2}-3}{x\left(x^{2}-1\right)\left(x^{2}+4\right)^{2}}$.
Solution.

$$
\frac{a_{1}}{x}+\frac{a_{2}}{x-1}+\frac{a_{3}}{x+1}+\frac{b_{1} x+c_{1}}{\left(x^{2}+4\right)^{2}}+\frac{b_{2} x+c_{2}}{\left(x^{2}+4\right)} .
$$

(2b) Find the partial fractions decomposition of $\frac{x^{2}-3}{x^{2}\left(x^{2}+6\right)}$. Show your work and reasoning.

Solution. Write

$$
\frac{x^{2}-3}{x^{2}\left(x^{2}+6\right)}=\frac{a}{x^{2}}+\frac{b}{x}+\frac{c x+d}{x^{2}+6} .
$$

Cross multiply to get

$$
x^{2}-3=a\left(x^{2}+6\right)+b x\left(x^{2}+6\right)+(c x+d) x^{2}=(b+c) x^{3}+(a+d) x^{2}+6 b x=6 a .
$$

Therefore

$$
a=-\frac{1}{2}, \quad b=0, \quad b+c=0, \quad a+d=1 .
$$

Therefore

$$
b=0 \text { and } d=\frac{3}{2}
$$

Final answer:

$$
-\frac{1}{2} \cdot \frac{1}{x^{2}}+\frac{3}{2} \cdot \frac{1}{x^{2}+6} .
$$

(3a) Find the area under the graph $y=x^{-1 / 3}$ from $x=0$ to $x=4$. Show all steps of your reasoning.

Solution. This is an improper integral, with integrand unbounded as $x \rightarrow 0^{+}$.

$$
\left.\int_{t}^{4} x^{-1 / 3} d x=\frac{3}{2} x^{2 / 3}\right]_{t}^{4}=\frac{3}{2}\left(4^{2 / 3}-t^{2 / 3}\right)
$$

Now

$$
\lim _{t \rightarrow 0^{+}} \int_{t}^{4} x^{-1 / 3} d x=\frac{3}{2} \cdot 4^{2 / 3}
$$

($\mathbf{3 b} \mathbf{b})$ Determine whether the improper integral $\int_{10}^{\infty} e^{-1 / x}\left(1+x^{6}\right)^{-1} d x$ converges.
Solution. Let f be the given integrand, and define $g(x)=x^{-6}$. Then $f(x) \leq g(x)$ for all $x \geq 10$ since

$$
\frac{e^{-1 / x}}{1+x^{6}} \leq \frac{1}{1+x^{6}} \leq \frac{1}{x^{6}}=x^{-6}
$$

We learned that improper integrals $\int_{a}^{\infty} x^{-p} d x$ converge for any lower limit of integration $a>0$ if $p>1$. Here $p=6$, so $\int_{10}^{\infty} g(x) d x$ converges. By the comparison theorem, the given integral also converges.
(4) Let $f(x)=x^{2} \cos (x)$. How large should we take n in order to guarantee that the Midpoint Rule approximation M_{n} to $\int_{2 \pi}^{4 \pi} f(x) d x$ is accurate to within 10^{-8} ? (That is, $\left|\int_{2 \pi}^{4 \pi} f(x) d x-M_{n}\right|<10^{-8}$.)
Solution. We use the midpoint rule error bound $\left|E_{M_{n}}\right| \leq \frac{(b-a)^{3} K}{24 n^{2}}$. Here $b-a=2 \pi$. To find an OK value for K we use

$$
\begin{aligned}
\left|f^{\prime \prime}(x)\right| & =\left|-x^{2} \cos (x)-4 x \sin (x)+2 \cos (x)\right| \\
& \leq x^{2}|\cos (x)|+4 x|\sin (x)|+2|\cos (x)| \\
& \leq x^{2}+4 x+2 \\
& \leq 4 \pi)^{2}+16 \pi+2 .
\end{aligned}
$$

Define

$$
K=4 \pi^{2}+16 \pi+2
$$

Now find n satisfying $\frac{(b-a)^{3} K}{24 n^{2}}<10^{-8}$. This is equivalent to

$$
n^{2}>10^{8}(2 \pi)^{3} K / 24
$$

Thus we choose n to be the smallest positive integer that satisfies

$$
n>10^{4}(2 \pi)^{3 / 2}\left(4 \pi^{2}+16 \pi+2\right)^{1 / 2} / \sqrt{24} .
$$

(5) How does the Mean Value Theorem enter into the derivation of the integral formula for arclength?

Solution. The length of the curve is the limit, as $\Delta x \rightarrow 0$, of the sum

$$
\Delta x \sum_{i=1}^{n} \sqrt{1+\left(\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x}\right)^{2}}
$$

of the lengths of approximating line segments.
According to the Mean Value Theorem,

$$
\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x}=f^{\prime}\left(x_{i}^{*}\right)
$$

for some unknown points x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$. Thus the sum is expressed as a Riemann sum approximating $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

