
CS 61B Midterm 1 Solutions
Problem 2
a) countChar (16 points). Fill in the countChar method below so that
it counts the number of instances of the given character. For example,
countChar("exxon", 'x') should return 2, and countChar("zebraZzz",
'Z') should return 1. You may use a maximum of 10 blank lines for
this problem. Note: These 10 lines do not include the method signature nor
the closing brace, i.e. these lines are not initially blank.

/** Counts the number of occurrences of c in a.
For example countChar(" moo", ' o') would return 2.
You may assume the String is not null. */

public static int countChar(String a, char c) {
int count = 0;
for (int i = 0; i < a.length(); i += 1) {

if (a.charAt(i) == c) {
count += 1;

}
}
return count;

}
// Reminder: s.charAt(0) gets the 0th character of s
// Our solution uses the 7 blank lines provided.
// Yours may use more or less (up to the maximum of 10).

b) XComparator (18 points). Suppose we want to build a comparator
XComparator that compares two strings based on the number of times lowercase
‘x’ appears in the string. For example an XComparator would consider “exxon”
to be greater than “some axons”. Below, implement the XComparator. For
this and the remaining questions, assume the countChar(String a, char c)
method from part a has been imported and works correctly, i.e. you can call
countChar("exxon", 'x') and expect to get back 2.

Recall from lecture that the compare method of the Comparator interface in
Java returns a negative number if the first argument is less than the second,
0 if they are equal, and a positive number if the first argument is greater, e.g.
compare("exxon", "some axons") would return a positive number. You may
assume none of the parameters to compare are null.

public class XComparator implements Comparator<String> {
/** Compares two strings based on the number of xs in

the strings. For example exxon > axon, because 2
occurrences of x is more than 1 occurrence of x. */

public int compare(String a, String b) {
return countChar(a, 'x') - countChar(b, 'x');

1

} // Our solution uses 1 line. Yours may use more.
}

c) CharCountComparator (22 points) Now suppose we want to build a
more general character counting comparator whose constructor takes a character
as an argument, and whose compare method compares two strings based on the
count of that character. For example, if we create CharCountComparator c =
new CharCountComparator('z'), then c.compare("mazzy", "lazer") would
consider mazzy larger since it has two ‘z’s vs. lazer’s single ’z’. You may assume
none of the parameters to compare are null.

public class CharCountComparator implements Comparator<String> {
private char c;

public CharCountComparator(char givenC) {
c = givenC;

}

public int compare(String a, String b) {
return countChar(a, c) - countChar(b, c);

}
}

d) WordFinder (36 points). Now complete the following code that will read
in all the words from a words.txt file and return the word with the most ’z’s.
You may use a maximum of 11 blank lines for this problem.

public class WordFinder {
public static void main(String[] args) {

In in = new In("words.txt");
String[] words = in.readAllStrings();
String wordWithMostZs = findMax(words, new CharCountComparator('z'));
System.out.println(wordWithMostZs);

}

/** Finds the maximum string in the array of strings using the
given comparator. You may assume the array is of length
at least 1, and that none of the strings are null. If there is
a tie, then break the tie arbitrarily. For example, if all the
strings are equal according to the comparator, you can return
any of the strings. */

private static String findMax(String[] strings, Comparator<String> c) {
String best = strings[0];
for (int i = 0; i < strings.length; i += 1) {

int cmp = c.compare(strings[i], best);
if (cmp > 0) {

best = strings[i];

2

}
}
return best;

} // our solution uses 8 blank lines. yours may use up to 11.
} // findMax must work for any provided comparator! That is,

// it cannot be hard coded to look for strings with the most zs.

Problem 3
a) (50 points) Suppose we define the following strange class. Note that the
equals method has the signature equals(Student other). Recall from lecture
11 that the Object class’s equals method has the signature equals(Object
other). That is, this class is not overriding the equals method!

public class Student {
public String name;
public int SID;

public Student(String n, int id) {
name = n;
SID = id;

}

public boolean equals(Student other) {
if (name.equals(other.name) &&

SID == other.SID) {
return true;

}
return false;

}
}

Suppose we define five Java variables as shown:

Student sB = new Student("Borf", 123);
Student sG = new Student("Gorf", 123);
Student sB2 = new Student("Borf", 123);
Object oG = sG;
Object oB2 = sB2;

For each of the lines below, fill in the bubble for the return of the expression.
Or if the line has a compile or runtime error, fill in the “runtime error” (RE) or
“compile error” (CE) bubble instead. Not all answers may be used.

1. sB.equals(sG)

• [] true

3

• [x] false
• [] compile error
• [] runtime error

2. sB.equals(sB2)

• [x] true
• [] false
• [] compile error
• [] runtime error

3. sB == sB2

• [] true
• [x] false
• [] compile error
• [] runtime error

4. sG.equals(oG)

• [x] true
• [] false
• [] compile error
• [] runtime error

5. sG == oG

• [x] true
• [] false
• [] compile error
• [] runtime error

6. sG.equals((Student) oG)

• [x] true
• [] false
• [] compile error
• [] runtime error

7. sB.equals(oB2)

• [] true
• [x] false
• [] compile error
• [] runtime error

8. sB == oB2

• [] true
• [x] false
• [] compile error
• [] runtime error

4

9. sB.equals((Student) oB2)

• [x] true
• [] false
• [] compile error
• [] runtime error

10. ((Object) sB2).equals((Student) oB2)

• [x] true
• [] false
• [] compile error
• [] runtime error

b) (8 points) Suppose we fix the equals method so that it takes an Object as
an argument instead of a Student. Once we’ve done that, we are now properly
overriding the equals method.

@Override
public boolean equals(Object o) {

Student other = (Student) o;
if (name.equals(other.name) && SID == other.SID) {

return true;
}
return false;

}

After making this change, which of the following returns true that did not return
true before? Only one is correct.

• [] sB.equals(sG)
• [] sB.equals(sB2)
• [] sB == sB2
• [] sG.equals(oG)
• [] sG == oG
• [] sG.equals((Student) oG)
• [x] sB.equals(oB2)
• [] sB == oB2
• [] sB.equals((Student) oB2)
• [] ((Object) sB2).equals((Student) oB2)

c) (8 points) The equals method above does not do all of the things that
we said that an equals method should do in lecture. Describe at least one
improvement we could make below:

Three possible improvements:

• Null check needed, i.e. checking that the inputted object is not null
• Checking if inputted object is actually a Student
• Returning true if the inputted object is == to this

5

Problem 4
DMSDogs (28 points) Suppose we define the classes below:

public class Dog {
public void bark() {

System.out.println("bark");
}

}

public class Puppy extends Dog {
public void bark() {

System.out.println("lil bark");
}

}

public class DogLover {
public void pet(Dog d) {

System.out.print("pet dog");
d.bark();

}
public void pet(Puppy p) {

System.out.print("pet puppy");
p.bark();

}
}

public class PuppyLover extends DogLover {
public void pet(Puppy p) {

System.out.print("pup love");
p.bark();

}
}

What will be the output of the lines of code below?

public static void main(String[] args) {
PuppyLover pl = new PuppyLover();
Puppy p = new Puppy();
pl.pet(p);
((DogLover) pl).pet(p);
pl.pet((Dog) p);
((DogLover) pl).pet((Dog) p);

}

For each call to pet above, notice that multiple things can be printed. Check

6

the boxes for all that is printed. The order in which you check the checkboxes
doesn’t matter.

1. pl.pet(p)

• [] bark
• [x] lil bark
• [] pet dog
• [] pet puppy
• [x] pup love

2. ((DogLover) pl).pet(p)

• [] bark
• [x] lil bark
• [] pet dog
• [] pet puppy
• [x] pup love

3. pl.pet((Dog) p)

• [] bark
• [x] lil bark
• [x] pet dog
• [] pet puppy
• [] pup love

4. ((DogLover) pl).pet((Dog) p)

• [] bark
• [x] lil bark
• [x] pet dog
• [] pet puppy
• [] pup love

Problem 5
AddOnlyList (118 points). Before starting this problem, be aware that for
all parts of this problem, you may assume the earlier parts were
done correctly and can be used, e.g. feel free to use indexOfI in part
b, even if you didn’t get part a correct. You may not need earlier
methods for later problems, e.g. get(int i) (part b) may not be useful
for addLast (part c).

Suppose we define a new AddOnlyList class as follows:

public class AddOnlyList<T> {
private T[] items;
private int size;

7

public AddOnlyList() {
items = (T[]) new Object[8];
size = 0;

}
private int indexOfI(int i, int M) { /* you'll write this */ }
public T get(int index) { /* you'll write this */ }
public void addLast(T item) { /* you'll write this */ }
private void resize(int newlen) { /* you'll write this */ }

}

Instead of treating the array like a circle like you did in ArrayDeque, the
AddOnlyList uses an outward-in pattern to store its items, as shown in the
figure below:

Figure 1: AddOnlyList visualization

For an items array of size 8, item 0 in the list goes in index 0, item 1 goes in
index 7, item 2 goes in index 1, item 3 goes in index 6, item 4 goes in index 2,
and so forth. The figure above corresponds to a list whose items are [a, b, c, d]
in that order. If we were to add e to the end of the list, it would go in index 2.
If we were to add f after that, it would go in index 5.

Fill in the functions indexOfI, get, addLast, and resize.

indexOfI gives the position of the ith element if the size array is of length M.
For example if i = 3, and M = 8, then indexOfI(3, 8) is 6. Note that item 3
(‘d’) is in position 6 in the figure above. You may assume that M is a power of 2
that is greater than or equal to 8.

These functions are worth 40, 32, 32, and 14 points, respectively. For indexOfI and get,
your solution must fit in the skeleton provided. For addLast and resize you
may usea maximum of 5 and 8 lines respectively. The lines we provide
in addLast and resizedo not add to your line count.

public class AddOnlyList<T> {
private T[] items;
private int size;

8

public AddOnlyList() {
items = (T[]) new Object[8];
size = 0;

}

/* DO NOT CHANGE ANYTHING ABOVE THIS LINE. */

private int indexOfI(int i, int M) {
if (i % 2 == 0) {

return i / 2;
} else {

return M - i / 2 - 1;
}

}

public T get(int i) {
return items[indexOfI(i, items.length)];

}

public void addLast(T x) {
if (size == items.length) {

resize(size * 2);
}
int index = indexOfI(size, items.length);
items[index] = x;
size += 1;

} // Our addLast code uses 3 blank lines.
// Yours may use less or more up to a max of 5.

public void resize(int newlen) {
T[] newItems = (T[]) new Object[newlen];
for (int i = 0; i < size; i += 1) {

int targetIndex = indexOfI(i, newlen);
newItems[targetIndex] = get(i);

}
items = newItems;

} // Our addLast code uses 5 blank lines.
// Yours may use less or more up to a max of 8.

}

Problem 6
a) Testing contains (20 points). Suppose we add a method contains to
our List61Binterface with the signature below. This method returns true if the

9

given List61B contains the given item. The midterm 1 reference page might be
useful for this problem.

default public boolean contains(T x)

Write a JUnit test that verifies that this method works correctly for a list of
length 3. Your test should verify that it works for all three items in the list, and
that it works correctly for an input which is not in the list. Assume all JUnit
classes needed have been imported.You may use a maximum of 8 lines for
this problem.

@Test
public void testContains() {

AList<Integer> L1 = new AList<>();
L1.addLast(0);
L1.addLast(1);
L1.addLast(2);

assertTrue(L1.contains(0));
assertTrue(L1.contains(1));
assertTrue(L1.contains(2));
assertFalse(L1.contains(3));

} // Our test uses the 7 lines provided above,

b) contains (30 points) Write the method contains. It should work for
all possible inputs, not just your JUnit test above. Your method must be
non-destructive. You may not need all lines. You may use a maximum
of 8 lines for this problem.

public interface List61B<T> {
public void addLast(T x);
public T getLast();
public T get(int i);
public int size();
public T removeLast();
public void insert(T x, int position);
public void addFirst(T x);
public T getFirst();
default boolean contains(T x) {

for (int i = 0; i < size(); i += 1) {
if (get(i).equals(x)) {

return true;
}

}
return false;

} // Our code uses 6 lines.
}

10

c) Testing itemsNotIn (35 points). Suppose we add a method itemsNotIn to
our List61B interface with the signature below. This method returns a list
containing only the items that are in the current list, but not in the List61B pro-
vided as an argument. The items in the returned list should be in the same
order. Your midterm 1 reference sheet might be useful for this problem. This
method should be non-destructive.

default List61B<T> itemsNotIn(List61B<T> other)

For example, if you have a list x that contains the numbers 1 through 100 and a
list ywhich contains the numbers 80 through 120, then x.itemsNotIn(y) would
create a new list that contains the numbers 1 through 79, in that order. After
this function call, x and yshould remain unchanged.

Write a JUnit test that verifies that this method works correctly on the lists given
in the starter code. You do not need to test that L1 and L2 are unchanged. You
may use a maximum of 8 lines for this problem.

@Test
/** Your test does not need to verify that itemsNotIn is

non- destructive! In real life, you would, probably as
a separate JUnit test.*/

public void testItemsNotIn() {
AList<Integer> L1 = new AList<>();
L1.addLast(0);
L1.addLast(1);
L1.addLast(2);

AList<Integer> L2 = new AList<>();
L2.addLast(1);
L2.addLast(4);
L2.addLast(5);

List61B<Integer> L1only = L1.itemsNotIn(L2);
assertEquals(2, L1only.size());
assertEquals(2, (int) L1only.removeLast());
assertEquals(0, (int) L1only.removeLast());

} // Our test uses 4 lines above

d) itemsNotIn (35 points) Write the method itemsNotIn. It should work
for all possible inputs, not just your JUnit test above. Your method
must be non-destructive. You may not need all lines. You may assume
the contains method from part b is available and works correctly, even if you
did not complete part b. You may use a maximum of 10 lines for this
problem.

public interface List61B<T> {
public void addLast(T x);
public T getLast();

11

public T get(int i);
public int size();
public T removeLast();
public void insert(T x, int position);
public void addFirst(T x);
public T getFirst();
default boolean contains(T x) { /* not shown */ }
default List61B<T> itemsNotIn(List61B<T> other) {

AList<T> meOnly = new AList<>();
for (int i = 0; i < size(); i += 1) {

T current = get(i);
if (!other.contains(current)) {

meOnly.addLast(current);
}

}
return meOnly;

} // Our code uses 8 lines.
}

Problem 7
a) removeNode (25 points). Suppose we have a version of the LinkedListDeque class
from project 1, but hard-coded to use integers instead of a generic type. This
new version is called IntLinkedListDeque. Its instance variable and Node class
are as shown:

public class IntLinkedListDeque {
private Node sentinel;

private class Node {
private int value; // Note: Value for a node is an integer, not a generic type!
private Node next, prev;
// constructor not shown

}
... // constructor and methods not shown

}

Suppose we add a private removeNode method to IntLinkedListDeque that
removes the specified node and keeps the list contiguous. The signature for this
method is:

private void removeNode(Node t)

Assume that we’re using the circular sentinel topology described in lecture and
recommended for project 1A. Write the removeNode method below. You may
assume that t is not null and that t is a valid node in the list. There’s no need

12

to update the size, because IntLinkedListDeque does not have a size variable.

As an example, suppose we have a IntLinkedListDeque containing
three Nodes with values 1, 2, and 3. Now suppose we call removeNode(sentinel.next),
the front item of the list would be removed, and the list would have
two Nodes with values 2 and 3. You may use a maximum of 4 lines for
this problem.

/** Removes the specified node from the list.
You may assume that t is not null.
You may assume that the node is a valid node in the list. */

private void removeNode(Node t) {
t.prev.next = t.next;
t.next.prev = t.prev;

} // Our solution is 2 lines.
// Yours may use less or more, up to the maximum of 4.

b) removeOneIterative (40 points). Suppose we want to provide a public
facing removemethod with the signature shown below:

public boolean removeOneIterative(int x)

This method should return true if the item was located and removed, and false
if the item was not in the list. Fill in the removeOneIterative move method
below. Your method should only delete the first instance of x. For example, if
the list contains

3, 4, 5, 6, 4, 5, 6

and you call

removeOneIterative(4)

on that list, the list would now contain

3, 5, 6, 4, 5, 6

You may use the removeNode method from part a, even if you did not complete
part a correctly.

You may use a maximum of 10 lines for this problem, which does not
include the lines of skeleton code already provided

public boolean removeOneIterative(int x) {
Node p = sentinel.next;
while (p != sentinel) {

if (p.value == x) {
removeNode(p);
return true;

}
p = p.next;

}

13

return false;

} // Our removeOneIterative method uses 8 blank lines,
// not including the two starter code lines.
// Yours may use less or more up to a max of 10.

c) removeOneRecursive (40 points). Repeat the exercise from part b, but
this time with a recursive approach:

public boolean removeOneRecursive(int x)

We’ve provided a private recursive helper method that you must use. If you
can’t figure out how to write the private recursive helper method, you can still
use it in the public method. You may not call removeOneIterative. You may
use the removeNode method from part a, even if you did not complete part a
correctly. You may use a maximum of 7 lines for this problem, which
does not include the lines of skeleton code already provided.

private boolean removeOneRecursive(Node p, int x) {
if (p == sentinel) {

return false;
}
if (p.value == x) {

removeNode(p);
return true;

}
return removeOneRecursive(p.next, x);

} // Our solution uses 5 lines, not including the
// starter code lines.
// Yours may use less or more up to a max of 7.

public boolean removeOneRecursive(int x) {
return removeOneRecursive(sentinel.next, x);

}

d) Using RemoveOne (50 points). Suppose that the IntLinkedListDeque im-
plements the Fa20MidtermList interface, given below:

public interface Fa20MidtermList {
public boolean removeOne(int x); // equivalent to removeOneIterative and removeOneRecursive
public void addFirst(int x);
public void addLast(int x);
public int getFirst();
public int getLast();
public int removeFirst();
public int removeLast();
public int get(int i);

14

public int size();
}

Suppose we want to add a default method moveToFront with the signature
below:

default public void moveToFront(int x)

This method should move all instances of x to the front of the list. For example,
if the list initially contains

1, 2, 10, 10, 4, 10, 7, 10

and you call

moveToFront(10)

the list should change so that it now contains

10, 10, 10, 10, 1, 2, 4, 7

As you can see, the items have all moved to the front. You may assume all of
the methods of Fa20MidtermList ****have been implemented properly.

Note that this is a default interface method, i.e. it should work for
any type of Fa20MidtermList. You may use a maximum of 10 lines for
this problem.

default public void moveToFront(int x) {
int N = 0;
while (removeOne(x)) {

N += 1;
}
for (int i = 0; i < N; i += 1) {

addFirst(x);
}

} // Our first solution used 7 blank lines total.
// There is a shorter, more clever solution.
// Yours may be more or less, up to a maximum of 10.
// Note: THIS MUST WORK FOR ANY TYPE OF Fa20MidtermList
// NOT JUST AN IntLinkedListDeque!

or

default public void moveToFront(int x) {
if (removeOne(x)) {

moveToFront(x);
addFirst(x);

}
}

e) Using RemoveOne II (50 points). Suppose we want to add a default
method rippleRemove with the signature below:

15

default public int rippleRemove(int x)

This method has strange behavior (hey, it’s an exam!). It attempts to remove
ALL instances of x. If it deletes at least one copy of x, then it will also attempt
to delete all copies of x - 1. If it deletes at least one x - 1 from the list, it
will attempt to delete x - 2, and so forth until it can find no more numbers to
delete. For example, suppose we have a Fa20MidtermList containing the values

10, 6, 5, 6, 6, 4, 9, 8, 9, 10, 8, 6, 12

Suppose we call rippleRemove(10) on that list. Now the list will contain

6, 5, 6, 6, 4, 6, 12

That is, all of the 10s, 9s, and 8s have been deleted. This function returns the total
number of items it removed. In the example above, rippleRemove(10) should
return 6, since it deleted 2 of each of the numbers 8, 9, and 10. For par-
tial credit, write a function that only deletes all instances of x and returns
the number of xs removed. You may assume that all of the methods from
the Fa20MidtermList listed above have been implemented correctly. You may
use a maximum of 14 lines for this problem.

default public int rippleRemove(int x) {
if (removeOne(x)) {

return 1 + rippleRemove(x) + rippleRemove(x - 1);
}
return 0;

}

or

default public int rippleRemove(int x) {
int count = 0;
while (removeOne(x)) {

count += 1;
}
if (count > 0) {

return count + rippleRemove(x - 1);
}
return 0;

}

16

	CS 61B Midterm 1 Solutions
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7

