Chemistry 4B Exam 1

Kshitij Chauhan

TOTAL POINTS

90 / 100

QUESTION 1

N2O5 Decomposition 20 pts

1.1 Calculate Rate Constant 10 / 10

\checkmark + 10 pts Correct Answer with units and sig figs

- + 0 pts Incorrect
- 2 pts Wrong sig figs or No/wrong units
- 2 pts Calculator Error
- + 2 pts Has integrated first order rate expression
- + 2 pts Plugs in 1/2* original concentration
- + 2 pts Rearranges and solves for k

1.2 Unreacted molecules 10 / 10

\checkmark + 10 pts Correct answer

+ 2 pts Writes out first order integrated rate

expression

+ 2 pts Converts 1 day into seconds (86,400)

+ 2 pts Sets up equation to solve for unreacted molecules

- 2 pts Click here to replace this description.
- + 0 pts no points

QUESTION 2

Pyridine 20 pts

2.1 Diff Rate Expression 10 / 10

\checkmark + 10 pts correct differential rate law by using method of initial rates

+ **3 pts** Writes differential rate law with variables in exponent

+ **2 pts** Sets up ratio of rate expressions and solves for order of CH3I

+ **2 pts** Sets up ratio of rate expressions to solve for order of C5H4N

- + 0 pts Incorrect
- 3 pts Did not show all work

2.2 Rate Constant 10 / 10

\checkmark + 10 pts Correct answer with units and sig figs

- + **2 pts** Writes correct differential rate equation with orders calculated in part a
 - + 2 pts Rearranges and solves for k
 - + 2 pts Plugs in correct values from any trial
 - 2 pts Wrong sig figs or wrong/no units
 - 2 pts Calculation or scientific notation error
 - + 0 pts Incorrect or blank

QUESTION 3

lodine 10 pts

3.1 Calculate Concentration 10 / 10

\checkmark + 10 pts Correct concentration with sig figs and units

- + 2 pts Writes second order integrated rate law
- + 2 pts Plugs in correct values
- 2 pts Wrong sig figs or wrong / no units
- + 0 pts Wrong integrated rate law
- 2 pts Minor calculation error
- 2 pts Contested rubric (no scoring error)

QUESTION 4

Isomerization Reaction 20 pts

4.1 Calculate Arrhenius Factor 8 / 10

\checkmark + 10 pts Correct answer with units

- + 2 pts Writes arrhenius equation
- + 2 pts Rearranges and solves for A
- + 2 pts Converts kJ to J or vice versa
- √ 2 pts Wrong/no units
 - + 0 pts Incorrect

4.2 Calculate Rate Constant 10 / 10

 \checkmark + 10 pts Correct final k with units

- 2 pts wrong sig figs or wrong / no units
- + 7 pts Right calculation with wrong numbers
- + 7 pts Right calculation, arithmetic error
- 2 pts Rounding error
- + 8 pts Right calculation, k not evaluated
- + 0 pts No credit

QUESTION 5

Steady State Assumption 15 pts

5.1 Rate Expression 15 / 15

\checkmark + **15 pts** Correct answer using steady state approx

- + 3 pts Starts with correct differential rate law
- + 3 pts Sets up steady state approx
- + 3 pts Solves for [CI] in ss correctly
- + 0 pts Incorrect
- 3 pts Arithmetic Error / Missing Line
- 2 pts Erroneous Superfluous Information

QUESTION 6

MM Kinetics 15 pts

6.1 Determine Constant 7 / 15

\checkmark + 7 pts Correct value for k2 with units and sig figs

- + 8 pts Correct value for km with unit and sig figs
- + 2 pts Writes MM rate law
- + 3 pts Simplifies rate for high [S]
- + 3 pts Sets up ratio of rates to solve for km
- 2 pts Wrong sig figs or no / wrong units
- + 0 pts incorrect
- 2 pts Small calculation error
- 2 pts Contested the rubric and not a grading error

Chemistry 4B Exam 1 February 14, 2020 Professor Saykally

С

Equations:

$$= c_0 e^{-kt}$$

$$\frac{d[\mathbf{P}]}{dt} = \frac{k_2[\mathbf{E}]_0[\mathbf{S}]}{[\mathbf{S}] + K_{\mathrm{m}}}$$

$$\frac{1}{c} = \frac{1}{c_0} + 2kt \qquad \qquad A = 2d^2 N_A \sqrt{\frac{\pi RT}{M}}P$$

 $k = A e^{-E_a/RT}$

Rules:

• Work all problems to 3 significant figures to correct # of sid figs

- No lecture notes or books permitted
- No word processing, graphing, or programmable calculators
- Time: 50 minutes
- Total: 100 points

SHOW ALL WORK IN BOXES PROVIDED TO RECEIVE CREDIT

- Answers with no work shown will receive no credit
- Periodic Table, Tables of Physical Constants, Equations, and Conversion Factors included

(1) (20 points) In lecture we studied the decomposition reaction of N₂O₅:

(a) What is the rate constant, k, for the first-order decomposition of N_2O_5 (g) at 25°C if the halflife of N_2O_5 (g) at that temperature is 4.03 x 104 s? (10 points)

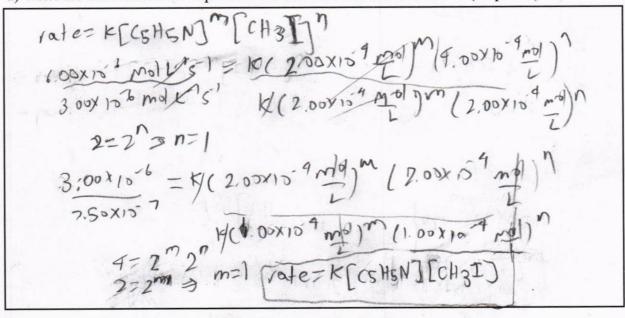
(b) What percentage of N2O5 molecules will not have reacted after 1 day? (10 points)

$$c = coe^{-kt}$$

$$S = e^{-kt}$$

$$S = e^{-1.12\times10^{-5}St^{-1}} \cdot 1dgy \times 24kt_{1,2} \cdot 60nt_{1,2} \cdot 60s}$$

$$S = e^{-1.12\times10^{-5}St^{-1}} \cdot 1dgy \times 24kt_{1,2} \cdot 60nt_{1,2} \cdot 60s}$$


$$S = 0.5226 \cdot x1001 = 22.61 \cdot 6 - parcentage remaining$$

$$parcentage that (emain = 22.6).$$

(2) (20 points) In a study of the reaction of pyridine (C₅H₅N) with methyl iodide (CH₃I) in a benzene solution, the following set of initial reaction rates was measured at 25 °C for different initial concentrations of the two reactants:

Reaction	[C5H5N] (mol L-1)	[CH3I] (mol L-1)	Rate (mol L-1 s-1)	
1	1.00×10^{-4}	1.00×10^{-4}	7.50×10^{-7}	1
2	2.00×10^{-4}	2.00×10^{-4}	3.00×10^{-6}	
3	2.00×10^{-4}	4.00×10^{-4}	6.00×10^{-6}	

a) Write the differential rate expression for this reaction. Show all work. (10 points)

b). Calculate the rate constant and give its units. (10 points)

$$rote = F[C_S] H_SN (CH_3]$$
7. Soxio mol L's' = K1. ooxio mol x 1. 00x10 Mol
 $F = 7.50 \times 10^{2} \frac{m0l}{L}$

$$\frac{1.00 \times 10^{-9} m0l}{L} \times 1.00 \times 10^{-9} mbl}$$

$$F = 75.0 L'mbls^{-1}$$

(3) (10 points) At 25°C in CCl₄ solvent, the reaction

$$I + I \rightarrow I$$

is second-order in concentration of the iodine atoms. The rate constant k has been measured as 8.2×10^9 L mol⁻¹s⁻¹. Suppose the initial concentration of *I* atoms is 1.00×10^{-4} M. Calculate their concentration after 2.0×10^{-6} s. (10 points)

rate: FIT] K= 8.2×109 Lmol-1 +72-0210-65 =1+2Kt = 17200Kt 00 172coff CC 1.00×10 mo $\frac{12(2)(1.00\times15^{4} \text{ m})(2.0\times10^{7})}{(2.0\times10^{7} \text{ m})}$ $(2.0\times10^{7} \text{ m})$ $(12.0\times10^{7} \text{ m})$ $(12.0\times10^{7} \text{ m})$

Name:

- (4) (20 points) The activation energy for the isomerization reaction of CH₃CN $CH_3NC \rightarrow CH_3CN$
- is 161 kJ mol-1; the reaction obeys first order kinetics, and the rate constant at 600 K is 0.41 s-1.
- (a) Calculate the Arrhenius factor A for this reaction (10 points)

 $A = 4.3 \times 10^{13} Lmol^{-1} s^{-1}$ \$.3HST + 000}

(b) Calculate the rate constant for this reaction at 1000 K. (10 points)

$$\begin{aligned}
 & |n(\frac{k_2}{k_1}) = -\frac{f\alpha}{k} \left(\frac{1}{2} - \frac{1}{1} \right) \\
 & k_2 = k_1 e^{\frac{f\alpha}{k}} \left(\frac{1}{2} - \frac{1}{1} \right) \\
 & k_2 = (0.41s^2) e^{-161} e^{\frac{f\alpha}{k_2}} \left(\frac{1}{100} \frac{1000}{k_1} \right) \frac{1}{k_1 3195 t} \times \left(\frac{1}{100} \frac{1}{000} \frac{1}{600} \right) \frac{1}{9} \\
 & k_{2} = 1.7 \times 10^5 s^{-1}
 \end{aligned}$$

(5) (15 points) The mechanism for decomposition of NO₂Cl is:

$$NO_2Cl \stackrel{k_1}{\rightleftharpoons} NO_2 + Cl$$
$$k_{-1}$$
$$k_2$$
$$NO_2Cl + Cl \rightarrow NO_2 + Cl_2$$

By making a steady state approximation for [C1], express the rate of appearance of Cl₂ in terms of the concentrations of NO₂Cl and NO₂.

$$\frac{d[c_12]}{d_4} = k_{\Sigma} [No2^{C_1}][c_1]$$

$$steody stote approximation for [c_1]$$

$$\frac{d[c_1]}{d_4} = k_{1} [No_{2}][c_1] - k_{2} [No_{2}c_1][c_1] = 0$$

$$\frac{d[c_1]}{d_4} = k_{1} [No_{2}][c_1] - k_{2} [No_{2}c_1] (c_1]$$

$$\frac{d[c_1]}{d_4} = k_{1} [No_{2}][c_1] + k_{2} [No_{2}c_1]$$

$$\frac{d[c_12]}{d_4} = k_{1} [No_{2}][c_1] + k_{2} [No_{2}c_1]$$

Name:

(6) (15 points) The enzyme lysozyme kills certain bacteria by attacking a sugar called *N*-acetylglucosamine (NAG) in their cell walls. At an enzyme concentration of 2.0×10^{-6} M, the maximum rate for substrate (NAG) reaction, found at high substrate concentration, is 1×10^{-6} mol L₁ s-1. The rate is reduced by a factor of 2 when the substrate concentration is reduced to 6.0 x 10-6 M. Determine the Michaelis-Menten constant K_m as well as k₂ for lysozyme.

when rate is half of moximum rate [5]> KM KM= 6.0×10-6M when role is maximum dCP) = S[Fo] $k_2 = 1 \times 10^{-6} m^{01}$ 2.0 × 18 0 mpl $k_2 = 0.5 \text{ s}^{-1}$

Chem 48 59 2020 E am 1

(b) (15 photos) The enzyme [________ are fails certain becieve its or allow g super ended Aacerylphacesemine (NAO) in their cell wells: At an one-me encounting of 2.0 a 10 a M, the maximum rate for substance (NAO) is eaction, (out-last light-substance concentration, is 1 x 10 a mol 1, 1 s.t. The rate is reduced by a factor of 2 when our substance concentration is reduced to all x 10 c M. Deterative de Michael's Mericen constant Ka as well as for lysertyme.

.