
Math 1B — UCB, Fall 2019 — M. Christ
Solutions for Midterm Exam 2a

(1) Determine whether each of the following infinite series converges, or diverges.

Show your reasoning. Justify your answers by citing theorems/tests by name.

(1a)
P1

n=1 n
�3

sin(n2
)

Solution. Let an = n�3
sin(n2

) and bn = n�3
. Then |an|  bn for every index n.

The series with terms bn converges by the p-test, with p = 3 > 1. The series

with terms |an| therefore converges by the comparison test. Thus the given series is

absolutely convergent. Therefore it converges. ⇤

(1b)
P1

n=2(�1)
n+1n1/n

Solution. Let an = (�1)
n+1n1/n

. Then |an| = n1/n
. We have learned that limn!1 n1/n

=

1. Therefore limn!1 |an| 6= 0. Therefore it is not true that limn!1 an exists and is

equal to zero. According to the Divergence test, the given series diverges. ⇤

(1c)
P1

n=1 n
�1

arctan(n)

Solution. Use the limit comparison test, with an = n�1
arctan(n) and bn = n�1

.

The series with terms bn is the harmonic series, which we know to be divergent.

Then

lim
n!1

an
bn

= lim
n!1

arctan(n) =
⇡

2
.

This limit is > 0, and < 1. Therefore according to the limit comparison test, either

both series converge, or both diverge. We know that the series with terms bn diverges,

so we conclude that the given series also diverges. ⇤

(1d)
P1

k=2
1

k(ln(k))4

Solution. Let an be the terms of the given series. Use the integral test. Define

f(x) = 1
x(ln(x))4) . This is a positive, decreasing, continuous function on the interval

[2,1), which satisfies f(n) = an for every positive whole number n.
The improper integral

R1
2 f(x) dx converges. To see this, use the substitution

x = eu to express

Z
1

x(ln(x))4
dx =

Z
u�4 du = �1

3u
�3

+ C = �1
3(ln(x))

�3
+ C.

Therefore

Z t

2

1

x(ln(x))4
dx = �1

3(ln(x))
�3
��t
2
=

1
3(ln(2))

�3 � 1
3(ln(t))

�3.

1



2

The limit of this quantity, as t ! 1, exists and is equal to
1
3(ln(2))

�3
. Therefore the

improper integral converges.

By the integral test, the given series also converges. ⇤
(2a) Determine the radius of convergence of the power seriesP1

n=1
(�1)n+12n

1+ln(n) (x� 1)
n
. Show your work and reasoning.

Solution. The series converges for x = 1 since every term is then equal to zero.

Assume now that x 6= 1. Let an =
(�1)n+12n

1+ln(n) (x� 1)
n
. Then

|an+1|
|an|

= 2|x� 1|1 + ln(n+ 1)

1 + ln(n)
.

To analyze the limit of
1+ln(x+1)
1+ln(x) as x ! 1, observe that both numerator and

denominator have limit 1. Therefore l’Hôpital’s rule can be applied:

lim
x!1

1 + ln(x+ 1)

1 + ln(x)
= lim

x!1

(x+ 1)
�1

x�1
= lim

x!1

x

x+ 1
= lim

x!1

1

1 + x�1
= 1.

Therefore

lim
n!1

|an+1|
|an|

= 2|x� 1|.

Therefore according to the ratio test, the series converges when |x � 1| < 1
2 , and

diverges when |x � 1| > 1
2 . (The test is inconclusive when |x � 1| = 1.) Thus the

radius of convergence is equal to
1
2 . ⇤

(2b) State the Limit Comparison Test. (An accurate statement includes any hy-

potheses.)

Solution. Let
P

an and
P

n bn be infinite series with positive terms. Assume

limn!1
an
bn

= c exists for some real number c > 0. Then either both series converge,

or both series diverge. ⇤
In class, I included the cases in which the limit equals 0 or 1 in the statement

of the test. In our text, they are stated separately (as exercises). Therefore on this
exam, full credit will be given for the version in the text.

(3) Let s be the sum of the series
P1

k=1 ke
�k
. For n = 1, 2, 3, . . . let sn be the n–th

partial sum of this series. Show how to find n su�ciently large to guarantee that

|s� sn| < 10
�4
. Justify your steps.

Solution. The function f(x) = xe�x
satisfies f 0

(x) = (1 � x)e�x
= �(x � 1)e�x

,

which is < 0 when x > 1. Therefore it is decreasing on the interval [1,1). It is also

positive and continuous on that interval. Therefore the integral test applies to the

given series.
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According to the integral test remainder bound,

Z 1

n

f(x) dx < s� sn <

Z 1

n+1

f(x) dx.

Therefore

|s� sn| <
Z 1

n

f(x) dx.

An antiderivative of f is

F (x) = �(1 + x)e�x.

(This can be computed by integrating by parts.)

Therefore Z t

n

f(x) dx = �(1 + t)e�t
+ (1 + n)e�n.

Consequently

lim
t!1

Z t

n

f(x) dx = (1 + n)e�n.

Therefore our final answer is the smallest whole number n that satisfies

(1 + n)e�n < 10
�4.

⇤

(4) Let f(x) = sin(3x). Show that the Taylor series for f at a =
⇡
4 converges to f(x)

for every real number x. (In your solution, you are not permitted to use any similar

results about convergence of Taylor series that we have already established for this

or other functions, such as sin(x) and cos(x).)

Solution. For each n, f (n)
(x) is one of the four functions ±3

n
sin(3x), ±3

n
cos(3x).

Therefore

|f (n)
(x)|  3

n
for every real number x.

Let Rn(x) be the remainder in the formula f(x) = Tn(x) + Rn(x), where f(x) =
sin(3x) and Tn is the n-th degree Taylor polynomial at a =

⇡
4 . Apply Taylor’s

inequality with

Mn = 3
n+1

to obtain

|Rn(x)| 
3
n+1

(n+ 1)!
|x� a|n+1

=
1

(n+ 1)!
|3(x� a)|n+1

=
|y|n+1

(n+ 1)!

with y = 3(x� a) = 3(x� ⇡
4 ) for any real number x.
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We have learned that limk!1
|y|k
k! = 0 for every real number y. Therefore limn!1 |Rn(x)| =

0 for every x. Therefore limn!1 Rn(x) = 0 likewise. Therefore the Taylor series at

a =
⇡
4 converges to sin(3x) for every real number x. ⇤

(5) Prove this part of the comparison test: If 0 < an  bn for every n, and if the seriesP1
n=1 bn converges, then the series

P1
n=1 an also converges. (You are not permitted

to use any part of the comparison test in this proof.)

Solution. (There is no need to assume that an > 0; the test applies so long as

an � 0.)

Assume that 0  an  bn for every n, and that the series with terms bn converges.

Define sn =
Pn

k=1 ak and tn =
Pn

k=1 bk to be the partial sums of these two series.

Because the comparison series converges, its partial sums form a bounded sequence.

Thus there exists a finite number T that satisfies tn  T for every n.
For every n,

sn = a1 + a2 + · · ·+ am  b1 + b2 + · · ·+ bn = tn,

by basic properties of addition and inequality. Therefore sn  tn  T for every n.
Thus the sequence (sn) of partial sums is bounded above.

This sequence is bounded below by a1 since

a1 + a2 + · · ·+ an � a1

since every term is � 0.

Finally, this sequence of partial sums is nondecreasing, since

sn+1 = sn + an+1 � sn

since an+1 � 0.

A fundamental theorem states that any sequence that is bounded and nondecreas-

ing, is convergent. Therefore the sequence (sn) of partial sums of the given series is

a convergent sequence. Therefore the series itself converges. ⇤
(6) Find all t > 0 such that

P1
k=1 t

ln(k)
is a convergent series. Justify your answer,

showing all steps of your reasoning.

Solution. (This is either the easiest problem on the exam, or the hardest. I awoke

on Wednesday morning with the conviction that the exam was excessively long, so

deleted it.)

If t > 1 then tln(k) ! 1 as k ! 1 (since ln(k) ! 1), so the series diverges by the

Divergence test. If t = 1 then all terms of the series equal 1, and again it diverges,

by the Divergence test.
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Assume 0 < t < 1. Express t = e�p
with p = ln(1/t) > 0. The terms of the series

are then

tln(k) = (e�p
)
ln(k)

= e�p ln(k)
= (eln(k))�p

= k�p

and thus we have a p-series. This series converges if and only if p > 1. Equivalently,

it converges

If and only if t < e�1
.

⇤


