Problem 1.

(12 points)
(a) Solve the given vector equation for α, or explain why no solution exists:

$$
\alpha\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+4\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right]
$$

A:
Performing the indicated operations we obtain the vector equations (2 points)

$$
\left[\begin{array}{c}
\alpha \\
2 \alpha \\
-\alpha
\end{array}\right]+\left[\begin{array}{c}
12 \\
16 \\
8
\end{array}\right]=\left[\begin{array}{c}
\alpha+12 \\
2 \alpha+16 \\
-\alpha+8
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right]
$$

Thus, if a solution α exists α must satisfy the three equations:

$$
\begin{aligned}
\alpha+12 & =-1 \\
2 \alpha+16 & =0 \\
-\alpha+8 & =4
\end{aligned}
$$

which leads to $\alpha=-13, \alpha=-8$ and $\alpha=4$. since α cannot simultaneously have three different values, there is no solution to the original vector equation. (2 points)
(b) For the matrix $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$, compute A^{2}, A^{3}, A^{4}.

A: (3 points) $A^{2}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right], A^{3}=\left[\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right], A^{4}=\left[\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right]$.
(c) Find the solution set of the following linear system

$$
\begin{array}{r}
3 x_{1}+4 x_{2}-x_{3}+2 x_{4}=6 \\
x_{1}-2 x_{2}+3 x_{3}+x_{4}=2 \\
10 x_{2}-10 x_{3}-x_{4}=1
\end{array}
$$

A:
The augmented matrix row-reduces to (3 points)

$$
\left[\begin{array}{ccccc}
1 & 0 & 1 & 4 / 5 & 0 \\
0 & 1 & -1 & -1 / 10 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Row 3 represents the equation $0=1$, so the original system has no solutions. The solution set is the empty set \emptyset. (2 points)

Problem 2.(8 points)
Define two mappings $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
2 x+y \\
0
\end{array}\right], S\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+y \\
x y
\end{array}\right]
$$

Determine whether T, S, are linear transformations.
A:
To prove that T is a linear transformation, note that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$, if we write

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

then we have (4 points)

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =T\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right) \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
2 x_{1}+x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 y_{1}+y_{2} \\
0
\end{array}\right]=T(\mathbf{x})+T(\mathbf{y})
\end{aligned}
$$

To prove that S is not a linear transformation, observe that (2 points)

$$
S\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad S\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad S\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Therefore, (2 points)

$$
\begin{aligned}
S\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & =S\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \neq\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =S\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+S\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

Thus it is not the case that $S(\mathbf{x}+\mathbf{y})=S(\mathbf{x})+S(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. It follows that S cannot be a linear transformation.

Problem 3.(20 points)
True or False: If True, explain why. If False, give an explicit numerical example for which the statement does not hold.
(a) If the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$ has a pivot in the last column, then the system $A \mathbf{x}=\mathbf{b}$ has no solution.
A: True. (2 points) Because there is a row of the form $\left[\begin{array}{llll}0 & 0 & \cdots & 0 \mid b\end{array}\right]$ with $b \neq 0$ in the augmented matrix, the linear system cannot have a solution.
(b) If for some matrix A, and some vectors \mathbf{x}, \mathbf{b}, we have $A \mathbf{x}=\mathbf{b}$, then \mathbf{b} is a linear combination of the column vectors of A.
A: True. (2 points) This follows that $A \mathbf{x}$ is a linear combination of the columns of A. (3 points)
(c) Given 2×2 matrices A, B, C, if $A B=A C$ and A is not a zero matrix, then $B=C$.

A: False (2 points). Take $A=B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $C=0$. (3 points)
(d) If a set of n vectors in \mathbb{R}^{m} are linearly dependent, then any vector in this set can be represented by the linear combination of other $n-1$ vectors $(n>1)$.
A: False. (2 points) Consider $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$. Then $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ are linearly dependent, but \mathbf{a}_{1} cannot be represented as the linear combination of $\mathbf{a}_{2}, \mathbf{a}_{3}$. (3 points)

Problem 4.

(10 points) For a real number c, consider the linear system

$$
\begin{aligned}
x_{1}+x_{2}+c x_{3}+x_{4} & =c \\
-x_{2}+x_{3}+2 x_{4} & =0 \\
x_{1}+2 x_{2}+x_{3}-x_{4} & =-c
\end{aligned}
$$

a) For what c, does the linear system have a solution?

A:
Let us find the REF of the augmented matrix (3 points)

$$
\left[\begin{array}{cccc|c}
1 & 1 & c & 1 & c \\
0 & -1 & 1 & 2 & 1 \\
1 & 2 & 1 & -1 & -c
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc|c}
1 & 1 & c & 1 & c \\
0 & -1 & 1 & 2 & 0 \\
0 & 1 & 1-c & -2 & -2 c
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc|c}
1 & 1 & c & 1 & c \\
0 & -1 & 1 & 2 & 0 \\
0 & 0 & 2-c & 0 & -2 c
\end{array}\right]
$$

Each of the two row has a pivot. Thus the linear system has a solution if and only if $c \neq 2 .(2$ points)
b) Find the solution set when $c=0$.

A: When $c=0$, this is a homogeneous linear system. (1 points) the REF of the unaugmented matrix is (2 points)

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & -1 & 1 & 2 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

The free variable is x_{4} and so the solution set is (2 points)

$$
\left\{\left.\left[\begin{array}{c}
-3 x_{4} \\
2 x_{4} \\
0 \\
x_{4}
\end{array}\right] \right\rvert\, x_{4} \in \mathbb{R}\right\}
$$

Problem 5.

(10 points)
Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfies

$$
T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and the image of T contains at least two linearly independent vectors. Which of the following are a possible standard matrix of T ?
a) $\left[\begin{array}{ccc}-1 & 1 & 0 \\ -2 & 2 & 0 \\ 1 & -1 & 0\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 1 & -2 \\ 2 & 2 & -4 \\ 1 & -1 & -2\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & 2 & -2 \\ 0 & -1 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & 2 & -2 \\ 2 & -1 & -1\end{array}\right]$
e) $\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 2 & -2 \\ 0 & -1 & 0\end{array}\right]$

A: First, the second column must be

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

which is satisfied by all matrices. (2 points)
Use the linearity, we find that the standard matrix A must satisfy

$$
A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This is satisfied by a) c) d) but not b) e) (2 points)
The image of T, i.e. the span of the vectors in a) is

$$
\left\{\left.c\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right] \right\rvert\, c \in \mathbb{R}\right\}
$$

which does not contain two linearly independent vectors. (3 points)
The first two columns of c) d) are already linearly independent. (3 points)
So the answer is c) d).

