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1 Problem 1

(a)

Kirchhoff’s loop law gives the equation:

IR+
Q

C
= 0, (1.1)

and taking I = Q̇ gives the equation

Q̇+
1

RC
Q = 0, (1.2)

which is solved by
Q(t) = q0e

−t/RC , (1.3)

where we used Q(0) = q0.

(b)

We have
I = Q̇ = − q0

RC
e−t/RC . (1.4)

The power dissipated is then

P = I2R =
q20
RC2

e−2t/RC . (1.5)

(c)

By energy conservation, the power dissipated in the resistor will heat up the gas. After all the
charge has been released, the total energy dissipated will be

∆E =

∫ ∞
0

P dt =
q20
2C

, (1.6)

which is nothing more than the total energy originally contained in the capacitor. All of this goes
to heat up the gas:

Q = nCP∆T =
7

2
nR(Tf − T0). (1.7)

We can determine nR as nR = P0V0
T0

= P0LA
T0

, so

q20
2C

=
7

2

P0LA

T0
(Tf − T0), (1.8)

for which we can solve

Tf =

(
1 +

q20
7CP0LA

)
T0. (1.9)

The volume is then

Vf =
nRTf
P0

= LA

(
1 +

q20
7CP0LA

)
(1.10)
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2 Problem 2

(a)

The particle is negatively charged – the trajectory made by the particle is one for a negative charge
moving to the right in a magnetic field into the page.

(b)

For motion at constant velocity, the magnetic and electric forces are in equilibrium. We must
therefore have

FB = qv0B = qE, (2.1)

which gives

v0 =
E

B
. (2.2)

(c)

The circular motion of the particle must obey

F = m
v20
R
, (2.3)

and the source of the force F is the magnetic field. We therefore have

FB = qv0B = m
v20
R
, (2.4)

which we can rearrange to get
q

m
=

v0
RB

=
E

RB2
. (2.5)

3 Problem 3

(a)

The total impedance of the circuit is given by:

ZRLC =
1

iωC
+ iωL+R, (3.1)

which has magnitude

|ZRLC | =

√
R2 +

(
ωL− 1

ωC

)2

. (3.2)

Now we must have
|Vin(t)| = |I(t)||ZRLC |. (3.3)

For Vout, we see that it measures the voltage drop across the capacitor and inductor, corresponding
to impedance

|ZLC | =
∣∣∣∣ωL− 1

ωC

∣∣∣∣ , (3.4)
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and we must have
|Vout(t)| = |I(t)||ZLC |. (3.5)

Note in particular that the circuit is a series one, and hence I(t) is the same through all components.
Then we immediately have

|Vout(t)|
|Vin(t)|

=
|ZRLC |
|ZLC |

=

∣∣ωL− 1
ωC

∣∣√
R2 +

(
ωL− 1

ωC

)2 =

∣∣ω2CL− 1
∣∣√

ω2C2R2 + (ω2CL− 1)2
=

∣∣4π2f2CL− 1
∣∣√

4π2f2C2R2 + (4π2f2CL− 1)2
.

(3.6)
When plotted as a function of f :

(b)

We see from the graph/function that the amplitude ratio vanishes for ω = 2πf = 1√
LC

. Then we
want

f =
1

2π
√
LC

, (3.7)

so if we fix f , then we get

C =
1

4π2f2L
=

1

4π2(60 Hz)2(0.1 H)
∼ 70 µF. (3.8)

(c)

We want
1

2
=

∣∣ω2CL− 1
∣∣√

ω2C2R2 + (ω2CL− 1)2
, (3.9)

which we see occurs when √
ω2C2R2 + (ω2CL− 1)2 = 2

∣∣ω2CL− 1
∣∣ , (3.10)

which corresponds to
ω2C2R2 = 3(ω2CL− 1)2, (3.11)

which we can solve as

R =

√
3|ω2CL− 1|

ωC
. (3.12)

Plugging in numbers:
R ∼ 10 Ω. (3.13)
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4 Problem 4

Let us first consider two concentric loops of wire, one of radius R1 and one of radius R2. The loop
with radius R1 has a CCW current I and the loop with radius R2 has CW current I. The first
loop of radius R1 generates a magnetic field at its center pointing out of the page of strength

B1 =
µ0I

2R1
. (4.1)

The second loop generates a magnetic field at its center pointing into the page of strength

B2 =
µ0I

2R2
. (4.2)

Therefore the magnetic field at the center of the two wires will be

B12 =
µ0I

2

(
1

R1
− 1

R2

)
, (4.3)

pointing out of the page.

Now, we consider only the section of the loops within the angle θ, as in the figure. Clearly the
parts of the loop that point away from C do not contribute any magnetic field to C. Then the the
field generated at C will simply be the proportional amount according to θ, i.e.

B =
µ0I

2

(
1

R1
− 1

R2

)
θ

2π
, (4.4)

pointing out of the page.

5 Problem 5

(a)

The plane contributes a field ~E1 = − σ
2ε0
x̂. For the slab, we consider it as stacking together several

planes with surface charge σ = ρ dx, which each contribute a field dE2 = σ
2ε0

= ρ dx
2ε0

. Then the total
contribution of the slab is

E2 = −
∫ d/2

−d/2

ρ dx

2ε0
x̂ = − ρd

2ε0
x̂. (5.1)

Then the field to the left of the plane is

E(x < −d/2) = −
(
σ

2ε0
+
ρd

2ε0

)
x̂. (5.2)

(b)

The analysis for the right side of the slab is identical to the one above, as there is no dependence
on distance outside of the slab, so

E(x > d/2) =

(
σ

2ε0
+
ρd

2ε0

)
x̂. (5.3)
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(c)

The thin plane contributes a field ~E1 = σ
2ε0
x̂ everywhere inside the slab. Consider a point x0 inside

the slab. There are 2 competing fields: the part of the slab with x < x0 and the part with x > x0.
The part to the left contributes a field:

~EL =

∫ x0

−d/2

ρ dx

2ε0
x̂ =

ρ

2ε0

(
x0 +

d

2

)
x̂, (5.4)

while the part to the right contributes

~ER = −
∫ d/2

x0

ρ dx

2ε0
x̂ =

ρ

2ε0

(
x0 −

d

2

)
x̂. (5.5)

Adding everything together:

~E(x) =

(
σ

2ε0
+
ρx

ε0

)
x̂. (5.6)

6 Problem 6

(a)

Let z be the axis pointing out of the page, so ~B = −Bẑ. Then x points to the right and y points
up. A charge q at distance r from the pivot moves with velocity:

~v = ~ω × ~r = ωẑ × r(cos θx̂+ sin θŷ) = ωr(− sin θx̂+ cos θŷ). (6.1)

Then the magnetic force is

~F = q~v × ~B = qωrB(sin θx̂− cos θŷ)× ẑ = −qωrB(cos θx̂+ sin θŷ) = −qωrBr̂. (6.2)

(b)

The build up of charges due to the magnetic field will generate an electric field that will eventually
stabilize charges against the electric field. Consider a charge q after this equilibrium has been
achieved. In equilibrium, ~FE + ~FB = 0, so

~FE = q ~E = qωrBr̂. (6.3)

We hence have
~E = ωrBr̂. (6.4)

Integrating to find the potential difference between the ends of the rod:

∆V = −
∫ L

0
ωrB dr = −1

2
ωBL2. (6.5)

In fact, there is a subtlety in the problem that we have not considered – there is a centrifugal force
arising from the rotation of the rod! We implicitly assumed it was negligible and hence ignored it,
but a more careful solution would need to consider such effects.
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