
S20 PHYSICS 7B: Wang MT 2 Solutions

April 7, 2020

1 Problem 1

(a)

The left side shows a side-on view, while the right side shows a head-on view. The field is radial.

(b)

Clearly the flux through the two faces that the wire passes through is 0. By symmetry, the flux
through each of the remaining four faces is identical. That is, if the total flux through the cube is
Φ, then each of the four faces that are not intersected by the wire have flux Φf = Φ/4. To compute
Φ, we use Gauss’s Law:

Φ =

∫
E · da =

Qenc

ε0
. (1.1)

We can explicitly compute the enclosed charge:

Qenc = λL, (1.2)

so

Φf =
1

4
Φ =

Qenc

4ε0
=
λL

4ε0
. (1.3)

Alternatively, we could directly compute the flux through a longer, but straightforward, calculation:

Φf =

∫
E · da (1.4)

=

∫
λ

2πε0r
cos θ dx dy (1.5)

=
λ

2πε0

∫ L/2

−L/2

∫ L/2

−L/2

1√
(L/2)2 + y2

L/2√
(L/2)2 + y2

dx dy (1.6)

=
λL

4πε0

∫ L/2

−L/2

∫ L/2

−L/2

1

(L/2)2 + y2
dx dy (1.7)
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=
λL

4πε0
(L)

(π
L

)
(1.8)

=
λL

4ε0
(1.9)

2 Problem 2

(a)

We begin by finding the field everywhere, which can be done in the standard way using Gauss’s
Law for a spherically symmetric system, so that the field is only radial:

E =


0, r > c
Q

4πε0r2
r̂, c ≥ r ≥ b

0, b > r

. (2.1)

V (a) = −
∫

E · dl = −
∫ a

∞
E dr (2.2)

so we can compute:

V (r) =


0, r > c
Q

4πε0

(
1
r −

1
c

)
, c ≥ r ≥ b

Q
4πε0

(
1
b −

1
c

)
, b > r

(2.3)

In particular, note that the boundary conditions need to match at r = b, c.

(b)

By connecting the inner and outer shells, charge will flow until they have the same potential.
Suppose the final charge on the outer shell is Qc and the inner shell is Qa, with the restriction that
Qa +Qc = −Q, by charge conservation. The middle shell still has charge Qb = Q. Now computing
the potential everywhere:

V (r) =


0, r > c
Q+Qa

4πε0

(
1
r −

1
c

)
, c ≥ r ≥ b

Q+Qa

4πε0

(
1
b −

1
c

)
+ Qa

4πε0

(
1
r −

1
b

)
, b > r ≥ a

Q+Qa

4πε0

(
1
b −

1
c

)
+ Qa

4πε0

(
1
a −

1
b

)
, a > r

(2.4)

Now equating the potentials at r = c and r = a:

0 =
Q+Qa

4πε0

(
1

b
− 1

c

)
+

Qa
4πε0

(
1

a
− 1

b

)
, (2.5)

and solving for Qa, we find:

Qa = Q
1
b −

1
c

1
c −

1
a

= Q
a(c− b)
b(a− c)

, (2.6)

and correspondingly

Qc = −Q−Qa = −Q
(

1 +
a(c− b)
b(a− c)

)
. (2.7)
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3 Problem 3

(a)

The sphere with a cavity can be treated as the superposition of two spheres: one with radius R
and charge density ρ, and one with radius 3R/4 and charge density −ρ. The electric field at any
point is then just the superposition of the fields from each sphere and the point charge. Between
(R, 0, 0) and (L, 0, 0), the field from each sphere and the point charge just points in the x direction.
The field from the larger sphere is:

E1 =
Q1

4πε0x2
x̂, (3.1)

where Q1 = 4
3πR

3ρ. The field from the smaller sphere is

E2 =
Q2

4πε0(x−R/4)2
x̂, (3.2)

where Q2 = −4
3π(3R/4)3ρ = − 9

16πR
3ρ. Finally, the field from the point charge is

E3 =
Q

4πε0(x− L)2
x̂. (3.3)

Then the field is the sum of all three:

E =
1

4πε0

(
4πR3ρ

3x2
− 9πR3ρ

16(x−R/4)2
+

Q

(x− L)2

)
x̂. (3.4)

(b)

By Newton’s Third Law, the force on the sphere with the cavity is equal in magnitude and opposite
to its force on the point charge. Its force on the point charge is computed as:

Fq = QEs = Q(E1 + E2) =
QR3ρ

3ε0

(
1

L2
− 27

64(L−R/4)2

)
x̂. (3.5)

Then the force on the sphere with the cavity is:

Fs = −Fq = −QR
3ρ

3ε0

(
1

L2
− 27

64(L−R/4)2

)
x̂. (3.6)

4 Problem 4

(a)

Let E1, E2, E3 be the electric field strengths in regions I, II, III, respectively. We can compute the
field everywhere using superposition of the field from a sheet of charge with uniform surface charge
density σ. Because the thick metal plate is a conductor, we must have E2 = 0. Moreover, it must
have −Q total charge on its left side at z = x, and it must have Q total charge on its right side at
z = x+L in order to force E2 = 0. Then setting z = 0 at the left plate and z = d at the right, and
σ = Q/A, we have

E1 =
σ

ε0
ẑ, E2 = 0, E3 =

σ

ε0
ẑ. (4.1)
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We integrate the electric field to find the potential difference:

|∆V | =
∫ d

0
E · dl = E1x+ E2L+ E3(d− x− L), (4.2)

giving:

|∆V | = E1x+ E3(d− x− L) =
σ

ε0
x+

σ

ε0
(d− x− L) =

σ

ε0
(d− L). (4.3)

(b)

The energy stored in the system is given by:

U =
1

2
CV 2 =

Q2

2C
. (4.4)

The capacitance can be computed by noting that the capacitor plates effectively form two capacitors
in series. The capacitance of two sheets of charge Q and −Q separated by distance z and with
areas A is:

C =
Q

V
=
Aε0
z
. (4.5)

Then we essentially have two capacitors of capacitance C1 = Aε0
x and C2 = Aε0

d−x−L . Combining
these in series:

Ceq =

(
1

C1
+

1

C2

)−1
=

(
x

Aε0
+
d− x− L

Aε0

)−1
=

Aε0
d− L

, (4.6)

and we hence find:

U =
Q2

2C
=
Q2(d− L)

2Aε0
. (4.7)

(c)

The work needed to pull the plate out a long distance away is given by:

W = Uf − Ui, (4.8)

where Uf is the energy of the final configuration and Ui is the energy of the initial configuration.
We compute the Ui in part (b). To compute Uf , we are simply computing the energy of a single
capacitor with separation distance d, which we know is:

Cf =
Aε0
d
. (4.9)

Hence:

W =
Q2d

2Aε0
− Q2(d− L)

2Aε0
=
Q2L

2Aε0
. (4.10)

5 Problem 5

(a)

To simplify the notation, let’s set all resistors to have resistance R and batteries to have voltage
difference V0 and put in numbers at the end. Consider the point at the top of the loop, to the
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left of the battery. Consider the loop of resistors in the clockwise direction from this point. By
Kirchhoff’s loop law, the voltage drop across the loop must be 0. So tracing the voltage drops from
our origin point:

V0 + IR+ IR+ V0 + IR+ IR+ V0 + IR = 0, (5.1)

where we have used the fact that the circuit, which is completely in series, has the same current
through each resistor. Solving for the current above, we find:

I = −3V0
5R

. (5.2)

We can now compute the voltage at any point in the circuit. From point A to point B, we trace
the voltage drop as:

VA + IR+ V0 + IR = VB, (5.3)

so

VB − VA = 2IR+ V0 = −6

5
V0 + V0 = −1

5
V0 = −0.3V. (5.4)

(b)

By introducing a short through the A and B terminals, we now have two new loops in the system:
the loop L1 on the right created by connecting A and B, and a large loop L2 ignoring the 2 resistors
and 1 battery between A and B. Let us first consider L1 in the clockwise direction: applying the
loop rules gives:

I1R− V0 + I1R = 0 =⇒ I1 =
V0
2R

. (5.5)

Note that this is not the current running through A and B; this is only the current running through
the two resistors and battery in this part of the loop. Now consider L2 in the clockwise direction,
for which applying the loop rules gives

I2R+ V0 + I2R+ V0 + I2R = 0 =⇒ I2 = −2V0
3R

. (5.6)

With these currents in hand, we can now applying the junction rule to (say) the upper junction:

IAB = I1 + I2 =
V0
2R
− 2V0

3R
= − V0

6R
= −2.5mA. (5.7)

By our choice of directions at the junction, the positive current direction is from A to B, so the
negative sign implies the current goes from B to A.
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