FALL 2020 FINAL EXAM SOLUTIONS

NIKHIL SRIVASTAVA + MATH 54 STUDENTS

The untimed section long answers are taken from the exam of Sophia Xiao, and appear starting on page 5 .

1. True False Questions

(1) If $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{R}^{5}$ are linearly independent and A is a 5×5 matrix with $\operatorname{rank}(A)=3$ then $A v_{1}, A v_{2}, A v_{3}, A v_{4} \in \mathbb{R}^{5}$ must be linearly dependent.

True. Since $A v_{1}, \ldots, A v_{4} \in \operatorname{col}(A)$ are four vectors in a subspace of dimension 3, they cannot be linearly independent.
(2) If A is an $m \times n$ matrix with reduced row echelon form R, then the number of pivots in R is equal to the number of nonzero singular values of A, counted with multiplicity.

True. Both are equal to the rank.
(3) If a 3×2 matrix A has two nonzero singular values, then there is a unique least squares solution to $A x=b$ for every $b \in \mathbb{R}^{3}$.

True. The condition on singular values means A has rank 2 , so its columns are linearly independent, which implies that $A x=0$ has a unique solution, implying uniqueness of the least squares solution.
(4) If a 3×2 matrix has orthonormal columns, then it must have orthonormal rows.

False. Consider $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$.
(5) If W and H are 3 dimensional subspaces of \mathbb{R}^{5} and P and Q are the standard matrices of the orthogonal projections onto them (respectively), then $P Q$ is the standard matrix of the orthogonal projection onto the subspace $W \cap H$.

False. $P Q$ may not be a projection matrix in general, in fact it may not even be symmetric! One specific example is $W=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ and $H=\operatorname{span}\left\{e_{1}+e_{2}, e_{3}+\right.$ $\left.e_{4}, e_{5}\right\}$.
(6) If A is a 5×5 matrix with exactly four nonzero entries, then $\operatorname{rank}(A) \leq 4$.

True. Row reduction never increases the number of zeros in a matrix, so the RREF of A must have at most four pivots. An alternate proof is that A has at most 4 nonzero columns, so its column space has rank at most 4.
(7) If A is similar to B and B is symmetric then A must be symmetric.

False. If $B=B^{T}$ and $A=P B P^{-1}$ for P which is not orthogonal, then A is not symmetric, since symmetric matrices are precisely those that are orthogonally diagonalizable.
(8) If σ is a singular value of a square matrix A then σ^{2} must be a singular value of A^{2}.

False. 1 is a singular value of $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ but $A^{2}=0$ has all singular values equal to zero.
(9) If A is a 4×4 matrix then it can be written as $A=U S$ for some orthogonal U and symmetric S.

True. Let $A=U \Sigma V^{T}$ be the full SVD of A. Then $A=U V^{T} V \Sigma V^{T}=\left(U V^{T}\right)\left(V \Sigma V^{T}\right)$ since $V^{T} V=I$. The first matrix is orthogonal since a V^{T} is orthogonal and a product of orthogonal matrices is orthogonal, and the second matrix is symmetric. This was the hardest question on the untimed portion of the exam.
(10) Let F be the vector space of infinitely differentiable functions from \mathbb{R} to \mathbb{R}. If three functions $f(t), g(t), h(t) \in F$ are linearly dependent, then the vectors

$$
\left[\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f^{\prime \prime}(0)
\end{array}\right],\left[\begin{array}{l}
g(0) \\
g^{\prime}(0) \\
g^{\prime \prime}(0)
\end{array}\right],\left[\begin{array}{c}
h(0) \\
h^{\prime}(0) \\
h^{\prime \prime}(0)
\end{array}\right] \in \mathbb{R}^{3}
$$

must be linearly dependent.
True. $c_{1} f+c_{2} g+c_{3} h=0$ in F implies $c_{1} f^{\prime}+c_{2} g^{\prime}+c_{3} h^{\prime}=0$ as well as $c_{1} f^{\prime \prime}+$ $c_{2} g^{\prime \prime}+c_{3} h^{\prime \prime}=0$. Plugging in 0 yields the conclusion.
(11) Let F be the vector space of infinitely differentiable functions from \mathbb{R} to \mathbb{R}. If three functions $f(t), g(t), h(t) \in F$ are linearly independent, then the vectors

$$
\left[\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f^{\prime \prime}(0)
\end{array}\right],\left[\begin{array}{c}
g(0) \\
g^{\prime}(0) \\
g^{\prime \prime}(0)
\end{array}\right],\left[\begin{array}{c}
h(0) \\
h^{\prime}(0) \\
h^{\prime \prime}(0)
\end{array}\right] \in \mathbb{R}^{3}
$$

must be linearly independent.
False. Consider the three functions t^{3}, t^{4}, t^{5}.

2. AM and PM Questions

Give an example of each of the following, explaining why it has the required property, or explain why no such example exists.
(1) Two 3×3 matrices A, B such that $\operatorname{rank}(A)=\operatorname{rank}(B)=1$ and

$$
\operatorname{rank}(A+B)=3 .
$$

Does not exist. If $\operatorname{col}(A)=\operatorname{span}\left\{v_{1}\right\}$ and $\operatorname{col}(A)=\operatorname{span}\left\{v_{2}\right\}$ then every vector in $\operatorname{col}(A+B)$ can be written as $c_{1} v_{1}+c_{2} v_{2}$, so the latter has dimension at most 2 .
(2) Two 2×3 matrices A_{1}, A_{2} with nonnegative entries (i.e., ≥ 0) such that the linear systems

$$
A_{1} x=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A_{2} x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

are consistent but the linear system

$$
\left(A_{1}+A_{2}\right) x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is inconsistent.
There are many examples. The key point is that the x_{1} which solves $A_{1} x_{1}=b$ need not have anything to do with the one that solves $A_{2} x_{2}=b$ - many people missed
this and mistakenly argued that you could use the same solution. For a concrete example, consider

$$
A_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right],\left(A_{1}+A_{2}\right)=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

(3) A 3×3 symmetric matrix A with all nonnegative entries (i.e., $a_{i j} \geq 0$) which has at least one *strictly negative* eigenvalue (i.e., $\lambda<0$).

Many examples. Easiest is to start with a 2×2 matrix with the required property, such as $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ which has a negative determinant, and embed it in the corner of a 3×3 matrix: $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, which just adds an extra zero eigenvalue.
(4) Two 3×3 symmetric matrices A, B such that the product $A B$ is not diagonalizable.

Again, easiest to first look for a 2×2 example. One instance is $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (which 'swaps' the entries) and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ with $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, our favorite nondiagonalizable matrix. Again, just add zeros to get a 3×3 example $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], B=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(5) Two 3×3 matrices A, B with nonnegative entries (i.e., ≥ 0) such that A and B are diagonalizable but $A+B$ is not diagonalizable.

Many examples. The first thing to remember is that diagonalizable matrices must have multiple eigenvalues, so $A+B$ must have this property. It is easy to know the eigenvalues of upper triangular matrices, so let's work with those. One then has the the example

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right], B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(6) Two 3×3 matrices A, B such that $\operatorname{rank}(A)=\operatorname{rank}(B)=2$ and $A B=0$.

Does not exist. Suppose $A B=0$ and B has rank 2 then B has two linearly independent columns, say b_{1}, b_{2}, and $A B=0$ implies $A b_{1}=A b_{2}=0$. But now there are two linearly independent vectors in $\operatorname{null}(A)$, which implies $\operatorname{rank}(A) \leq 1$, a contradiction.
(7) Two 2×2 matrices A_{1}, A_{2} with all nonnegative entries (i.e., ≥ 0) such that the linear systems

$$
A_{1} x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
A_{2} x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

are consistent, but the system

$$
A_{1} A_{2} x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is inconsistent.
Many examples. Take $A_{1}=A_{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$. Then $\operatorname{col}\left(A_{2}\right)$ does not contain e_{1}, so $A_{1} A_{2} x=b$ is consistent for the b above.
(8) A 3×3 matrix A with characteristic polynomial equal to

$$
\operatorname{det}(A-\lambda I)=-\lambda^{2}(\lambda-1)
$$

and a singular value equal to

Many examples. The characteristic polynomial tells us that the eigenvalues are $0,0,1$. Again, easiest to work with upper triangular matrices. To get a singular value of 2 we should have $A^{T} A$ having an eigenvalue of 4 . It would be easiest to determine this if $A^{T} A$ were diagonal, i.e., if A had orthogonal columns. This leads us to the example

$$
A=\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(9) A 3×3 matrix A with characteristic polynomial equal to

$$
\operatorname{det}(A-\lambda I)=-\lambda^{2}(\lambda-2)
$$

and a singular value equal to 1 .
Many examples. Same reasoning as above yields

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Q3.1
let $\vec{n}=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$
Define $\langle\vec{n}, \vec{v}\rangle=n_{1} v_{1}+2 n_{2} v_{2}+n_{3} v_{3}$.
This is an inner product because it satisfies the following axioms:
(1) $\langle\vec{n}, \vec{v}\rangle=u_{1} v_{1}+2 u_{2} v_{2}+n_{3} v_{3}=\langle\vec{v}, \vec{u}\rangle$
(2)

$$
\begin{aligned}
\langle\vec{u}+\vec{v}, \vec{w}\rangle & =\left(u_{1}+v_{1}\right) w_{1}+2\left(u_{2}+v_{2}\right) w_{2}+\left(u_{3}+v_{3}\right) w_{3} \\
& =u_{1} w_{1}+2 u_{2} w_{2}+u_{3} w_{3}+v_{1} w_{1}+2 v_{2} w_{2}+v_{3} w_{3} \\
& \left.=\left\langle\overrightarrow{u_{1}} \vec{w}\right\rangle+\langle\vec{v}, \vec{w}\rangle \quad \text { (where } \vec{w}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]\right)
\end{aligned}
$$

(3)

$$
\begin{aligned}
\langle c \vec{n}, \vec{v}\rangle & =c n_{1} v_{1}+2 c n_{2} v_{2}+c n_{3} v_{3}=c\left(n_{1} v_{1}+2 u_{2} v_{2}+n_{3} v_{3}\right) \\
& =c\langle\vec{n}, \vec{v}\rangle
\end{aligned}
$$

(4)

$$
\begin{aligned}
&\left\langle\overrightarrow{n_{1}} \vec{n}\right\rangle=n_{1}^{2}+2 n_{2}^{2}+n_{3}^{2} \geq 0 \quad \text { and } \\
& n_{1}^{2}+2 n_{2}^{2}+n_{3}^{2}=0 \quad \longleftrightarrow \quad n_{1}=n_{2}=n_{3}=0 .
\end{aligned}
$$

Furthermore,

$$
\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=1(0)+2(1)(1)+(-1)(2)=0
$$

$\therefore \mid\left\langle\vec{n}_{1} \vec{v}\right\rangle=n_{1} v_{1}+2 n_{2} v_{2}+n_{3} v_{3}$ is such an inner product.

Q 3.2

No such operator exists.

$$
\begin{aligned}
T(y) & =a y^{\prime}+b y \\
T^{2}(y) & =a\left(a y^{\prime}+b y\right)^{\prime}+b\left(a y^{\prime}+b y\right) \\
& =a\left(a y^{\prime \prime}+b y^{\prime}\right)+b\left(a y^{\prime}+b y\right)
\end{aligned}
$$

$$
\operatorname{ker}(T): \quad a y^{\prime}+b y=0
$$

$\operatorname{ker}(T)$ is all the solutions to the above 1st-order linear $O D E$. Therefore $\operatorname{kev}(T)$ has 1 dimension.

$$
\operatorname{kev}\left(T^{2}\right) \text { : soln. to } a^{2} y^{\prime \prime}+a b y^{\prime}+a b y^{\prime}+b^{2} y
$$

$\operatorname{ker}\left(T^{2}\right)$ has 2 dimensions.

Since $\operatorname{dim}(\operatorname{ker}(T))=1$ and $\operatorname{dim}\left(\operatorname{ker}\left(T^{2}\right)\right)=2$, $\operatorname{kev}(T) \neq \operatorname{ker}\left(T^{2}\right)$ for all T of the form

$$
T=a \frac{d}{d t}+b I
$$

Qu
a). Wronskian

$$
\begin{aligned}
& W {\left[e^{t}, \sin (2 t), \cos (3 t)\right](t) } \\
&=\left|\begin{array}{ccc}
e^{t} & \sin (2 t) & \cos (3 t) \\
e^{t} & 2 \cos (2 t) & -3 \sin (3 t) \\
e^{t} & -4 \sin (2 t) & -9 \cos (3 t)
\end{array}\right| \\
&= e^{t}(-18 \cos (2 t) \cos (3 t)-12 \sin (3 t) \sin (2 t)) \\
&-\sin (2 t)\left(-9 e^{t} \cos (3 t)+3 e^{t} \sin (3 t)\right) \\
&+\cos (3 t)\left(\operatorname{tact}-4 e^{t} \sin (2 t)+2 e^{t} \cos (2 t)\right) \\
&= e^{t}[-18 \cos (2 t) \cos (3 t)-12 \sin (3 t) \sin (2 t)+9 \sin (2 t) \cos (3 t) \\
&= e^{t}[-16 \cos (2 t) \cos (3 t)-15 \sin (2 t) \sin (3 t)+5 \sin (2 t) \cos (3 t)] \\
& W\left[e^{t}, \sin (2 t), \cos (3 t)\right](0)=1[-16]=-16 \neq 0
\end{aligned}
$$

Since the wronskian is nonzero at $t=0$,
$\left\{e^{t}, \sin (2 t), \cos (2 t)\right\}$ ane linearly independent.
b). Since $\left\{e^{t}, \sin (2 t), \cos (2 t)\right\}$ ane linearly independent, they form a basis for W. let's call this basis B.
let $\vec{b}_{1}=e^{t}, \vec{b}_{2}=\sin (2 t), \vec{b}_{3}=\cos (2 t)$

$$
[T]_{B}=\left[\begin{array}{l}
\left.\left[T\left(\vec{b}_{1}\right)\right]_{B}\left[T\left(\vec{b}_{2}\right)\right]_{B}\left[T\left(\vec{b}_{3}\right)\right] B\right] \\
T\left(\vec{b}_{1}\right)=T\left(e^{t}\right)=e^{t}-a e^{t}=(1-a) e^{t}=(1-a) \vec{b}_{1} \\
T\left(\vec{b}_{2}\right)=T(\sin (2 t))=-4 \sin (2 t)-a \sin (2 t)=(-4-a) \vec{b}_{2} \\
T\left(\vec{b}_{3}\right)=T(\cos (3 t))=-9 \cos (3 t)-a \cos (3 t)=(-a-a) \vec{b}_{3}
\end{array}\right.
$$

$$
[T]_{B}=\left[\begin{array}{ccc}
1-a & -4+a & 0 \\
0 & -4-a & 0 \\
0 & 0 & -9-a
\end{array}\right]
$$

is invertible when there ane 3 pinots.

$$
1-a \neq 0, \quad-4-a \neq 0, \quad-9-a \neq 0
$$

$$
a \neq 1,-4,-9
$$

all a except those
$\stackrel{\wedge}{ }$

$$
05
$$

a). Let $B=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ be a basis for M_{2}.

If $x=x^{\top}$, then $x-x^{\top}=0$. Thenefone, to find all x st. $x=x^{\top}$ We can just find $\operatorname{ker}(T)$ when $T(x)=x-x^{T}$.

$$
\begin{aligned}
& T\left(\vec{b}_{1}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=0 \\
& T\left(\overrightarrow{b_{2}}\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\overrightarrow{b_{2}}-\overrightarrow{b_{3}} \\
& T\left(\vec{b}_{3}\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\vec{b}_{3}-\vec{b}_{2} \\
& T\left(\overrightarrow{b_{4}}\right)=0 \\
& {[T]_{B}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \operatorname{ker}\left([T]_{B}\right)=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right\} \\
& \operatorname{ker}(T)=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\} \\
& \therefore\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\} \quad \text { is a basis of } W \text {. } \\
& \text { dimension } 3
\end{aligned}
$$

b). $A \times A^{\top} \in M_{2}$ because A is 2×2. Now we just have to show that $\left(A X A^{\top}\right)^{\top}=A X A^{\top}$. if $X=X^{\top}$.
PF: $\left(A X A^{\top}\right)^{\top}=A^{\top} X^{\top} A^{\top}=A X^{\top} A^{\top}=A X A^{\top}$

$$
\therefore \quad A \times A^{\top} \in W
$$

Q5 (cont.)
C be
c). Let, the basis of W found in part a).

$$
\begin{aligned}
& T\left(\overrightarrow{1}_{1}\right)=T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=\vec{c}_{1}+\vec{c}_{2}-\vec{c}_{3} \\
& T\left(\vec{c}_{2}\right)=T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\vec{c}_{1}+\vec{c}_{2}+\vec{c}_{3} \\
& T\left(\vec{c}_{3}\right)=T\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]=2 \vec{c}_{1}-2 \vec{c}_{2}
\end{aligned}
$$

Find eigenvalues of $[T]_{c}$:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1-\lambda & 1 & 2 \\
1 & 1-\lambda & -2 \\
-1 & 1 & -\lambda
\end{array}\right| & =(1-\lambda)\left(-\lambda+\lambda^{2}+2\right)-(-\lambda-2)+2(m 1+1-\lambda) \\
& =-\lambda^{3}+2 \lambda^{2}-3 \lambda+2-\lambda+6 \\
& =-\lambda^{3}+2 \lambda^{2}-4 \lambda+8=0
\end{aligned}
$$

It is easy to see that $\lambda=2$.
Find eigenspace of $\lambda=2$:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 1 & 2 \\
1 & -1 & -2 \\
-1 & 1 & -2
\end{array}\right] \vee\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & 0 & 0 \\
0 & 0 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
& E_{\lambda=2}:\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Eigenvector: $\quad \vec{c}_{1}+\vec{c}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ has eigenvalue 2.

CHECK: $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \quad \sqrt{ }$

Qb

a). $A^{\top} A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 0 & -1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

Finding singular values:

$$
\begin{array}{rlr}
\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| & =(2-\lambda)^{2}-1=0 & \sigma_{1}=\sqrt{3} \\
& =\lambda^{2}-4 \lambda+3=0 & \sigma_{2}=1 \\
& =(\lambda-1)(\lambda-3)=0 &
\end{array}
$$

Finding V :
$\vec{v}_{1}:\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right] \sim\left[\begin{array}{cc}-1 & 1 \\ 0 & 0\end{array}\right] \Rightarrow \vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot \frac{1}{\sqrt{2}}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$\vec{v}_{2}:\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \sim\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right] \cdot \frac{1}{\sqrt{2}}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$

$$
V^{\top}=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Finding U :

$$
\begin{aligned}
& \vec{u}_{1}=\frac{A \vec{v}_{1}}{\sqrt{3}}=\left[\begin{array}{l}
1 \\
\sqrt{3}
\end{array}\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
2 / \sqrt{6} \\
-1 / \sqrt{6} \\
-1 / \sqrt{6}
\end{array}\right]\right. \\
& \vec{u}_{2}=\frac{A \vec{v}_{2}}{1}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right] \\
& U=\left[\begin{array}{cc}
2 / \sqrt{6} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{2} \\
-1 / \sqrt{6} & -1 / \sqrt{2}
\end{array}\right] \\
& A=U \Sigma V^{\top}=\left[\begin{array}{cc}
2 / \sqrt{6} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{2} \\
-1 / \sqrt{6} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

b). $\quad \operatorname{proj}_{\operatorname{col}(A)} \vec{x}=U U^{\top} \vec{x}$
because U is an orthowommal basis for $\operatorname{Col}(A)$.

$$
\begin{aligned}
P=U U^{\top} & =\left[\begin{array}{cc}
2 / \sqrt{6} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{2} \\
-1 / \sqrt{6} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
2 / \sqrt{6} & -1 / \sqrt{6} & -1 / \sqrt{6} \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 / 6 & -2 / 6 & -2 / 6 \\
-2 / 6 & 1 / 6+1 / 2 & 1 / 6-1 / 2 \\
-2 / 6 & 1 / 6-1 / 2 & 1 / 6+1 / 2
\end{array}\right]=\left[\begin{array}{ccc}
2 / 3 & -1 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3 & -4-1 / 3 \\
-1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
\end{aligned}
$$

c). Let $\quad \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Alternatively, note that $\left|A \vec{x}_{1}\right|=\sigma_{1}$ so $\left|A \vec{v}_{2}\right|=1$

$$
\begin{aligned}
& \text { Then } A \vec{x}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2} \\
-x_{2} \\
-x_{1}
\end{array}\right] \\
& \text { Then } \begin{aligned}
& A \vec{x}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
-x_{2} \\
-x_{1}
\end{array}\right] \\
&|A \vec{x}|^{2}=\sqrt{x_{1}{ }^{2}+x_{2}^{2}+2 x_{1} x_{2}+x_{2}^{2}+x_{1}{ }^{2}}
\end{aligned} \\
& =\sqrt{2 x_{1}^{2}+2 x_{2}^{2}+2 x_{1} x_{2}} \\
& |\vec{x}|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}} \\
& |A \vec{x}| \leq|\vec{x}| \longleftrightarrow|A \vec{x}|^{2} \leq|\vec{x}|^{2} \longleftrightarrow 2 x_{1}^{2}+2 x_{2}^{2}+2 x_{1} x_{2} \leq x_{1}^{2}+x_{2}^{2} \\
& \longleftrightarrow \quad x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \leq 0 \quad\left(x_{1}+x_{2}\right)^{2} \leq 0 .
\end{aligned}
$$

This only occurs when $x_{1}=-x_{2}$. Let $x_{1}=1$.

$$
\stackrel{\rightharpoonup}{x}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \begin{array}{rc}
|A \stackrel{\rightharpoonup}{x}| \leq|\stackrel{\rightharpoonup}{x}| & {\left[\begin{array}{c}
a \\
-a
\end{array}\right]}
\end{array}
$$

CHECK: $\quad A \vec{x}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
&|A \vec{x}|=\sqrt{2} \quad|A \vec{x}| \leq|\stackrel{\rightharpoonup}{x}| \\
&|\vec{x}|=\sqrt{2}
\end{aligned}
$$

a). $\quad y^{\prime \prime}-2 y^{\prime}+2 y=0$

$$
r^{2}-2 r+2=0 \Rightarrow r=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i
$$

Plug into formula for complex moots:
$y \in \operatorname{span}\left\{e^{+} \cos t, e^{+} \sin t\right\}$
General Soln: $y=c_{1} e^{t} \cos t+c_{2} e^{t} \sin t$
b). We alneddy found $y^{(h)}=c_{1} e^{t} \cos t+c_{2} e^{t} \sin t$

To find the particular soln, we guess $y^{(p)}=A t+B$.

$$
\begin{gathered}
\begin{array}{l}
y^{\prime}=A \\
y^{\prime \prime}=0
\end{array} \Longrightarrow \begin{array}{r}
0-2 A+2(A++B)=t+1 \\
-2 A+2 A t+2 B=t+1 \\
\Downarrow
\end{array} \\
\begin{array}{c}
2 A=1 \\
A=-1 / 2
\end{array} \quad-2 A+2 B=1 \\
y=\begin{array}{l}
2(p)=\frac{1}{2} t+1
\end{array}
\end{gathered}
$$

c).

$$
\begin{aligned}
& y^{\prime}(t)=c_{1}\left(-e^{t} \sin t+e^{+} \cos t\right)+c_{2}\left(e^{t} \cos t+e^{t} \sin t\right)+\frac{1}{2} \\
& y^{\prime}(0)=\frac{1}{2}+c_{1}+c_{2}=1 \rightarrow c_{1}+c_{2}=1 / 2 \rightarrow c_{2}=\frac{1}{2}+1 \\
& y(0)=1=0 \rightarrow c_{1}=-1 \\
& y=-e^{t} \cos t+\frac{3}{2} e^{t} \sin t+\frac{1}{2} t+1
\end{aligned}
$$

a). Find eigenvalues of A :

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
1 & 2-\lambda & 1 \\
1 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)\left[(2-\lambda)^{2}-1\right]-(2-\lambda-1)+(1-2+\lambda) \\
& =(2-\lambda)\left(\lambda^{2}-4 \lambda+3+\lambda-1+\lambda-1\right. \\
& =-\lambda^{3}+6 \lambda^{2}-9 \lambda+4 \\
& =-(\lambda-1)^{2}(\lambda-\eta)=0 \\
& \longrightarrow \quad \lambda=1,4 \\
& \lambda=1 \text { 教: }\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} \\
& \lambda=4:\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \\
& \text { Plug into formula for } \bar{x} \text { : } \\
& \left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

$$
\vec{x}(t)=c_{1} e^{t}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{3} e^{4 t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

b). $\vec{x}^{\prime}(t)=\left(A^{3}-A^{2}+I\right) \vec{x}(t)$

Let \vec{v} be an eigenvector of A \& λ be the comes ponging eigenvalue.
$\left(A^{3}-A^{2}+I\right) \vec{v}=A^{3} \vec{v}-A^{2} \vec{v}+I \vec{v}$

$$
\begin{aligned}
\left(A^{3}-A^{2}+I\right) \vec{v} & =A^{3} \vec{v}-A^{2} \vec{v}+I \vec{v} \\
& =\lambda^{3} \vec{v}-\lambda^{2} v+\vec{v}=\left(\lambda^{3}-\lambda^{2}+1\right) \vec{v}
\end{aligned}
$$

$\therefore \vec{v}$ is also an eigenvector of $\left(A^{3}-A^{2}+I\right)$ and $\left(\lambda^{3}-\lambda^{2}+1\right)$ is the comesponding eigenvalue.

$$
\begin{aligned}
& \lambda=1 \leadsto \lambda^{\prime}=1-1+1=1 \\
& \lambda=4 \leadsto \lambda^{\prime}=64-16+1=49
\end{aligned}
$$

Since $\left(A^{3}-A^{2}+I\right)$ has at most 3 lI eigenvectors, the eigennectors of A ane all of them.

$$
\vec{x}(t)=c_{1} e^{t}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{2} e^{+}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{3} e^{49+}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

a).

b)

$$
\begin{aligned}
& \frac{a_{0}}{2}=\frac{\langle 1, f\rangle}{2 \pi}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} \sin x d x=\frac{1}{2 \pi}[-\cos x]_{0}^{\pi}=\frac{1}{2 \pi}(1--1) \\
& =\frac{1}{\pi} \\
& a_{n}=\frac{\langle\cos (n x), f\rangle}{|\cos (n x)|^{2}}=\frac{1}{\pi} \int_{0}^{\pi} \sin x \cos (n x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} \sin (n x+x)+\sin (x-n x) d x \\
& =\frac{1}{2 \pi}\left[\frac{-\cos (n x+x)}{n+1}-\frac{\cos (x-n x)}{1-n}\right]_{0}^{\pi} \quad \& \text { when } n \neq 1 \\
& =\frac{1}{2 \pi}\left[\frac{-\cos (\pi n+\pi)}{n+1}-\frac{\cos (\pi-n \pi)}{1-n}+\frac{1}{n+1}-\frac{1}{n-1}\right]_{0}^{1} \\
& =\frac{1}{2 \pi}\left[\frac{\cos (\pi n)}{n+1}+\frac{\cos (\pi n)}{1-n}+\frac{1}{n+1}-\frac{1}{n-1}\right] \\
& =\frac{1}{d \pi}\left[\frac{(-1)^{n}}{n+1}+\frac{(-1)^{n}}{1-n}+\frac{1}{n+1}-\frac{1}{n-1}\right]=\frac{1}{2 \pi}\left[\frac{(-1)^{n}-n(-1)^{n}+(-1)^{n}+(-1)^{n} n+}{1-n+n+1}\right] \\
& =\frac{1}{2 \pi}\left[\frac{2(-1)^{n}+2}{1-n^{2}}\right]=\frac{1}{\pi}\left(\frac{(-1)^{n}+1}{1-n^{2}}\right) \neq \text { when } n \neq 1 \\
& a_{1}=\frac{1}{\pi} \int_{0}^{\pi} \sin x \cos x d x=\frac{1}{\pi}\left[\frac{\sin ^{2} x}{2}\right]_{0}^{\pi}=0 \quad \& \text { when } n=1 \\
& b_{n}=\frac{1}{\pi} \int_{0}^{\pi} \sin (x) \sin (n x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} \cos (x-n x)-\cos (x+n x) d x \\
& =\frac{1}{2 \pi}\left[\frac{\sin (x-n x)}{1-n}-\frac{\sin (x+n x)}{1+n}\right]_{0}^{\pi} \quad \Rightarrow \text { when } n \neq 1 \\
& =\frac{1}{2 \pi}\left[\frac{\sin (\pi-n \pi)}{1-n}-\frac{\sin (\pi+n \pi)}{1+n}\right]^{-0}=0 \\
& b_{1}=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2}(x) d x=\frac{1}{\pi}\left[\frac{-\sin (2 x)-2 x}{4}\right]_{0}^{\pi}=\frac{1}{2} \quad(\longrightarrow)
\end{aligned}
$$

$Q 9$ (cont).

$$
\begin{aligned}
& a_{n}= \begin{cases}0 & n=1 \\
\frac{(-1)^{n}+1}{\pi\left(1-n^{2}\right)} & n \neq 1\end{cases} \\
& b_{n}=\left\{\begin{array}{cc}
1 / 2 & n=1 \\
0 & n \neq 1
\end{array}\right.
\end{aligned}
$$

$$
\frac{a_{0}}{2}=\frac{1}{\pi}
$$

c). By the best appnoximation tho., proj Food f is the closest vector to f in Food.
In other words, $\quad \hat{f}=$ puoj Ford f minimizes $\|f-\hat{f}\|^{2}$.
Note that $\{\sin (n x)\}_{n=1}^{\infty}$ is an orthogonal basis of Food.

Therefore,

$$
\begin{aligned}
\hat{f} & =\operatorname{proj}_{\text {God }} f=\frac{\langle\sin x, f\rangle}{|\sin x|^{2}} \sin x+\frac{\langle\sin (2 x), f\rangle}{|\sin (2 x)|^{2}} \sin (2 x)+\cdots \\
& =\sum_{n=1}^{\infty} \frac{\langle\sin (n x), f\rangle}{|\sin (n x)|^{2}} \sin (n x)
\end{aligned}
$$

We already found the coefficient of $\sin (n x)$ in part $b)$. as b_{n}. since $b_{1}=\frac{1}{2}$ and b_{n} is 0 energy where else.

$$
\hat{f}=\frac{1}{2} \sin (x)
$$

