FALL 2020 FINAL EXAM SOLUTIONS

NIKHIL SRIVASTAVA + MATH 54 STUDENTS

The untimed section long answers are taken from the exam of Sophia Xiao, and appear
starting on page 5.

1. TRUE FALSE QUESTIONS

(1) If vy, v9, v3,v4 € R® are linearly independent and A is a 5 x 5 matrix with rank(A) = 3
then Avy, Avy, Avs, Avy € R® must be linearly dependent.

True. Since Avy, ..., Avy € col(A) are four vectors in a subspace of dimension 3,
they cannot be linearly independent.

(2) If Ais an m x n matrix with reduced row echelon form R, then the number of pivots
in R is equal to the number of nonzero singular values of A, counted with multiplicity.

True. Both are equal to the rank.

(3) If a 3 x 2 matrix A has two nonzero singular values, then there is a unique least
squares solution to Az = b for every b € R3.

True. The condition on singular values means A has rank 2, so its columns are
linearly independent, which implies that Az = 0 has a unique solution, implying
uniqueness of the least squares solution.

(4) If a 3 x 2 matrix has orthonormal columns, then it must have orthonormal rows.
10
False. Consider |0 1
00
(5) If W and H are 3 dimensional subspaces of R®> and P and @ are the standard matrices
of the orthogonal projections onto them (respectively), then PQ) is the standard
matrix of the orthogonal projection onto the subspace W N H.

False. PQ) may not be a projection matrix in general, in fact it may not even be
symmetric! One specific example is W = span{e, €2, e3} and H = span{e; + €2, e3 +
€y, €5}

(6) If Aisab x5 matrix with exactly four nonzero entries, then rank(A) < 4.

True. Row reduction never increases the number of zeros in a matrix, so the
RREF of A must have at most four pivots. An alternate proof is that A has at most
4 nonzero columns, so its column space has rank at most 4.

(7) If A is similar to B and B is symmetric then A must be symmetric.

False. If B = BT and A = PBP~! for P which is not orthogonal, then A is
not symmetric, since symmetric matrices are precisely those that are orthogonally
diagonalizable.

(8) If & is a singular value of a square matrix A then ¢ must be a singular value of A2
0 1

0 0] but A% = 0 has all singular values equal

False. 1 is a singular value of A = {

to zero.
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(9) If Ais a4 x 4 matrix then it can be written as A = US for some orthogonal U and
symmetric S.

True. Let A = UXVT be the full SVD of A. Then A = UVTVEVT = (UVT)(VEVT)
since VIV = I. The first matrix is orthogonal since a V7 is orthogonal and a product
of orthogonal matrices is orthogonal, and the second matrix is symmetric. This was
the hardest question on the untimed portion of the exam.

(10) Let F' be the vector space of infinitely differentiable functions from R to R. If three
functions f(t), g(t), h(t) € F are linearly dependent, then the vectors

FO) | 19(0) ] [ h(0)
FO) [, [g0)], | (0)] R’
) o)) [r)
must be linearly dependent.
True. c¢if + ¢cog + csh = 0 in F implies ¢ f' + cog’ + csh’ = 0 as well as ¢ f” +
cog” + c3h” = 0. Plugging in 0 yields the conclusion.
(11) Let F be the vector space of infinitely differentiable functions from R to R. If three
functions f(t), g(t), h(t) € F are linearly independent, then the vectors

f(0) 9(0) h(0)
FO) ], [g0)],|r0)] er?
f//(o) g//(o) h//(o)

must be linearly independent.

False. Consider the three functions ¢3, 4, ¢°.

2. AM AND PM QUESTIONS

Give an example of each of the following, explaining why it has the required property, or
explain why no such example exists.

(1) Two 3 x 3 matrices A, B such that rank(A) = rank(B) =1 and
rank(A+ B) = 3.

Does not exist. If col(A) = span{v;} and col(A) = span{v,} then every vector in
col(A + B) can be written as c;v; + cavg, so the latter has dimension at most 2.
(2) Two 2 x 3 matrices A, As with nonnegative entries (i.e., > 0) such that the linear

systems
1 1
All’ = |:1:| s AQIE = |:1:|

are consistent but the linear system
1

is inconsistent.
There are many examples. The key point is that the x; which solves Ajx; = b need

not have anything to do with the one that solves Asxy = b — many people missed
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this and mistakenly argued that you could use the same solution. For a concrete
example, consider

110 110 220
A= {1 0 0] e = [0 1 0] (At A = {1 1 0}'
(3) A 3 x 3 symmetric matrix A with all nonnegative entries (i.e., a;; > 0) which has at

least one *strictly negative® eigenvalue (i.e., A < 0).
Many examples. Easiest is to start with a 2 x 2 matrix with the required property,

such as B ﬂ which has a negative determinant, and embed it in the corner of a

1 20
3 x 3 matrix: A= |2 1 0], which just adds an extra zero eigenvalue.
0 00
(4) Two 3 x 3 symmetric matrices A, B such that the product AB is not diagonalizable.
Again, easiest to first look for a 2 x 2 example. One instance is A = (1) (1)
I , . 1 0] . 0 0 :
(which ‘swaps’ the entries) and B = 0 0 with AB = 1 ol our favorite non-
010
diagonalizable matrix. Again, just add zeros to get a3x3 example A= |1 0 0| ,B =
0 00
100
000
000

(5) Two 3 x 3 matrices A, B with nonnegative entries (i.e., > 0) such that A and B are
diagonalizable but A 4+ B is not diagonalizable.

Many examples. The first thing to remember is that diagonalizable matrices must
have multiple eigenvalues, so A + B must have this property. It is easy to know the
eigenvalues of upper triangular matrices, so let’s work with those. One then has the
the example

110 1 00
A=10 2 0[,B=1(0 0 O
0 00 0 00
(6) Two 3 x 3 matrices A, B such that rank(A) = rank(B) = 2 and AB = 0.

Does not exist. Suppose AB 0 and B has rank 2 then B has two linearly
independent columns, say by,by, and AB = 0 implies Aby = Aby = 0. But now
there are two linearly independent vectors in null(A), which implies rank(A) <1, a
contradiction.

(7) Two 2 x 2 matrices A, Ay with all nonnegative entries (i.e., > 0) such that the linear

systems
o]

o]
3

and



(9)

are consistent, but the system

AlAQJ) = |:}:|

1s inconsistent.
1 0

10

A Ayx = b is consistent for the b above.

A 3 x 3 matrix A with characteristic polynomial equal to
det(A — X)) = —\*(A—1)

and a singular value equal to

Many examples. Take A; = Ay = } Then col(As) does not contain eq, so

Many examples. The characteristic polynomial tells us that the eigenvalues are
0,0, 1. Again, easiest to work with upper triangular matrices. To get a singular value
of 2 we should have AT A having an eigenvalue of 4. It would be easiest to determine
this if AT A were diagonal, i.e., if A had orthogonal columns. This leads us to the
example

A:

o O O
S O N
_ o O

A 3 x 3 matrix A with characteristic polynomial equal to
det(A — X)) = —\*(\ —2)
and a singular value equal to 1.
Many examples. Same reasoning as above yields

010
A=1(0 0 0
00 2
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