Problem 1

a) We stack the engines on top of one another in the P-V diagram:

b) We simply combine the engines:

c) From the diagram of the equivalent engine, one could simply write

$$
\begin{equation*}
\epsilon_{e f f}=1-\frac{T_{0}}{T_{h}} \tag{1}
\end{equation*}
$$

One can also show that

$$
\begin{equation*}
\epsilon_{e f f}=\frac{W_{1}+W_{2}}{Q_{h}}=\frac{\epsilon_{1} Q_{1}+\epsilon_{2}\left(Q_{1}-W_{1}\right)}{Q_{1}}=\epsilon_{1}+\epsilon_{2}\left(1-\epsilon_{1}\right)=1-\frac{T_{0}}{T_{h}} \tag{2}
\end{equation*}
$$

Problem 2 The total heat is the sum of the heat requires to raise the temperature of the water and vaporize the wtaer:

$$
\begin{align*}
Q & =m_{w} c_{w}\left(T_{f}-T_{i}\right)+m_{w} L_{w}=m_{w}\left(c_{w}\left(T_{f}-T_{i}\right)+L_{w}\right) \tag{3}\\
& =\frac{1}{2}(4 * 80+2200) \mathrm{kJ}=1260 \mathrm{~kJ} \tag{4}
\end{align*}
$$

Problem 3

a)
b) (i) As given in the problem statement, the current has reached a steady state, so the current through each surface is the same.
(ii) Using $J=\sigma E$ and the fact that $J=I / A$, we have $E=I / A \sigma$ so that through any of the surfaces, $\Phi_{E}=I / \sigma$. Since I and A are constant, the flux through all the surfaces is the same
(iii) From the expression $E=I / A \sigma$, we see that the electric field decreases as one goes from the larger end to the smaller end

Problem 4

a) This is effectively two capacitors in parallel. The effective capacitance is

$$
\begin{equation*}
C_{e f f}=\frac{\kappa_{1} \epsilon_{0} A}{2 d}+\frac{\kappa_{2} \epsilon_{0} A}{2 d}=\frac{\left(\kappa_{1}+\kappa_{2}\right) \epsilon_{0} A}{2 d} \tag{5}
\end{equation*}
$$

b) This is two capacitors in series. Thus

$$
\begin{align*}
\frac{1}{C_{e f f}} & =\frac{d_{1}}{\kappa_{1} \epsilon_{0} A}+\frac{d_{2}}{\kappa_{2} \epsilon_{0} A} \tag{6}\\
C_{e f f} & =\frac{\kappa_{1} \kappa_{2} \epsilon_{0} A}{\kappa_{1} d_{2}+\kappa_{2} d_{1}} \tag{7}
\end{align*}
$$

Problem 5 Since the two branches have different resistances, we have

$$
\begin{align*}
I & =I_{1}+I_{2} \tag{8}\\
I_{1} R_{1} & =I_{2} R_{2} \tag{9}
\end{align*}
$$

so

$$
\begin{align*}
& I_{1}=I-I_{2}=I-I_{1} \frac{R_{1}}{R_{2}} \rightarrow I_{1}=\frac{I R_{2}}{R_{1}+R_{2}} \tag{10}\\
& I_{2}=\frac{I R_{1}}{R_{1}+R_{2}} \tag{11}
\end{align*}
$$

The force on a current carrying wire in a uniform magnetic field is given by $\vec{F}=I \vec{L} \times \vec{B}$. There is no force on the top and bottom parts of the loop. On the left side, there is a force of magnitude $F_{1}=I_{2} L B$ that points out of the page. On the right side, there is a magnetic force $F_{2}=I_{2} L B$, also out of the page. Thus the total torque is given by

$$
\begin{equation*}
\vec{\tau}=\frac{d I_{2} L B}{2} \hat{y}-\frac{d I_{1} L B}{2} \hat{y}=\frac{B L d}{2\left(R_{1}+R_{2}\right)}\left(R_{1}-R_{2}\right) \hat{y} \tag{12}
\end{equation*}
$$

a). $R=\frac{\rho L}{A}=\frac{\rho}{A}(r \theta+2 r)$
b). $\Phi_{B}=\frac{B c^{2} \theta}{2}$

$$
\int_{0}^{r} \int_{0}^{\theta} r^{\prime} d r^{\prime} d \theta
$$

$$
\frac{r^{2}}{2} \theta
$$

C).

$$
\begin{aligned}
& I=\frac{\varepsilon}{R}=\frac{B \omega r^{2}}{2 R}=\frac{B A \omega r}{2 \rho(\theta+1)} \quad \theta=\frac{\alpha t^{2}}{2}+\alpha \sigma \\
& I=\frac{B A \alpha r t}{\rho\left(\alpha t^{2}+4\right)} \\
& \frac{d I}{d t}=0=\frac{-\frac{A B r \alpha\left(t^{2} \alpha-4\right)}{\rho\left(4+t^{2} \alpha\right)^{2}}}{} \\
& t=\frac{2}{\sqrt{\alpha}} \\
& \quad \theta_{M}=\frac{\alpha}{2} \cdot \frac{4}{\alpha}=\alpha \\
& \text { d) } \omega_{M}=\sqrt{L_{\alpha} \theta_{M}}
\end{aligned}
$$

Problem 7

a) Since the emf drop across an inductor is $V=-L \frac{d I}{d t}$, we use the fact that two inductors in series carry the same current so that

$$
\begin{align*}
& V_{e f f}=V_{1}+V_{2}=-\left(L_{1}+L_{2}\right) \frac{d I}{d t}=-L_{e f f} \frac{d I}{d t} \tag{17}\\
& L_{e f f}=L_{1}+L_{2} \tag{18}
\end{align*}
$$

b) The inductors are in parallel, so they have the same voltage drop

$$
\begin{equation*}
L_{1} \frac{d I_{1}}{d t}=L_{2} \frac{d I_{2}}{d t}=L_{e f f} \frac{d I}{d t} \tag{19}
\end{equation*}
$$

where $I=I_{1}+I_{2}$. Plugging this into the middle equation, we find

$$
\begin{equation*}
\frac{d I_{1}}{d t}=\frac{L_{2}}{L_{1}+L_{2}} \frac{d I}{d t} \tag{20}
\end{equation*}
$$

plugging this into the equation on the left and setting it equal to the voltage drop across the effective inductor, we have

$$
\begin{equation*}
L_{e f f}=\frac{L_{1} L_{2}}{L_{1}+L_{2}} \tag{21}
\end{equation*}
$$

