Guidelines

- Closed book and notes.
- One-page information sheet allowed.
- There are some useful formulas in the end of the exam.
- The values of common parameters are listed at the beginning of next page.
Please use the following parameters for all problems unless specified otherwise:
\[\phi_{n+} = 550 \text{ mV}, \phi_{p+} = -550 \text{ mV}, V_{th} = 26 \text{ mV} \]
\[\varepsilon_{\text{Si}} = 11.7, \varepsilon_{\text{SiO}_2} = 3.9, \varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}, \]
\[q = 1.6 \times 10^{-19} \text{ C}, n_i = 10^{10} \text{ cm}^{-3}. \]

(1) Consider a silicon PN junction diode with an N-doping concentration of 10^{16} \text{ cm}^{-3} and a P-doping concentration of 10^{18} \text{ cm}^{-3}. Their cross-sectional area of the diode is 100 \text{ \mu m}^2. Assume the reverse saturation current of the diode is 10^{-14} \text{ Amp}. The diode is forward biased at 0.7V.
 a) [10 pt] Find the dynamic resistance at this bias.
 b) [10 pt] Find the depletion capacitance at this bias.

(2) Consider a MOS capacitor with a P+ polysilicon gate and an N-doped substrate with a doping concentration of 10^{16} \text{ cm}^{-3}. The thickness of the oxide is 20 nm.
 a) [10 pt] Find the threshold voltage.
 b) [10 pt] Which mode is the MOS capacitor in when its gate is biased at 1 V?
 c) [10 pt] What is the maximum capacitance per unit area?
 d) [10 pt] What is the minimum capacitance per unit area?

(3) [10 pt] For the MOS capacitor in Problem (2), plot the charge density distribution as a function of position when the gate is biased at -2V. Please be as quantitative as possible. Show the positions of all charges, and show the magnitude and polarity of the charges.

(4) [10 pt] If the P+ gate of the MOS capacitor in Problem (2) is replaced by a metal whose electrostatic potential is 0V. What is the threshold voltage of the new MOS capacitor?

(5) Consider an N-MOSFET with an N+ polysilicon gate on P-type substrate (N_a = 10^{17} \text{ cm}^{-3}). The source is grounded, and the drain is biased at 5V. The transistor has a gate length of 1 \mu m, and a width of 10 \mu m. The thickness of gate oxide is 10 nm. For simplicity, assume the channel-length modulation parameter \lambda = 0.

 a) [10 pt] At what gate voltage does the transistor turn on, i.e., start to have significant current flowing between source and drain?
 b) [10 pt] Find the drain current when the gate is biased at 2V.
Some equations

Mass-action law $n \times p = n_i^2(T)$

Resistivity: $\rho_n = \frac{1}{\sigma_n} = \frac{1}{q \mu_n N_{d_{eff}}}$

Resistance: $R = \frac{\rho L}{W t} = \left(\frac{\rho}{t} \right) \left(\frac{L}{W} \right) = R_{sq} \left(\frac{L}{W} \right)$

Total current (e$^-$): $J = J_{drift} + J_{diff} = q \mu_n n E + qD_n \frac{dn}{dx}$

Gauss’s law: $\int E \cdot dS = \frac{Q}{\varepsilon}$

Depletion layer: $X_{d0} = x_{p0} + x_{n0} = \sqrt{\frac{2 \varepsilon_s \phi_{bi}}{q} \left(\frac{1}{N_a} + \frac{1}{N_d} \right)}$

$X_d(V_D) = X_{d0} \sqrt{1 - \frac{V_D}{\phi_{bi}}}$

pn depletion layer capacitance: $C_j = \frac{q N_a x_{p0}}{2 \phi_{bi} \left(1 - \frac{V_D}{\phi_{bi}} \right) \sqrt{1 - \frac{V_D}{\phi_{bi}}}} = \frac{C_{j0}}{1 - \frac{V_D}{\phi_{bi}}}$

pn diffusion current $J_{diff} = q n_i^2 \left(\frac{D_p}{N_d W_n} + \frac{D_n}{N_a W_p} \right) \left(\frac{q V_D}{e kT} - 1 \right) i_D = I_S \left(\frac{q V_D}{e kT} - 1 \right)$

Diffusion capacitance: $C_d = \frac{1}{2} \frac{q l_D}{kT} \tau$
Threshold voltage (NMOS)

\[V_{Tn} = V_{FB} - 2\phi_p + \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_a (-2\phi_p)} \]

\[\phi_p = -\frac{kT}{q} \ln \frac{N_a}{n_i} \]

\[V_{Tn} = V_{Tn0} + \gamma \left(\sqrt{V_{SB} - 2\phi_p} - \sqrt{-2\phi_p} \right) \]

NMOS equations:

\[I_D = 0, \quad V_{GS} < V_{Tn} \]

\[i_D = \frac{W}{L} \mu C_{ox} \left(V_{GS} - V_{Tn} - \frac{V_{DS}}{2} \right) V_{DS} (1 + \lambda V_{DS}), \quad V_{GS} > V_{Tn}, \quad V_{DS} < V_{GS} - V_{Tn} \]

\[i_D = \frac{W}{L} \frac{\mu C_{ox}}{2} (V_{GS} - V_{Tn})^2 (1 + \lambda V_{DS}), \quad V_{GS} > V_{Tn}, \quad V_{DS} > V_{GS} - V_{Tn} \]

MOS capacitances in saturation

\[C_{gs} = \frac{2}{3} W L C_{ox} + C_{ov} \quad C_{ov} = L_D W C_{ox} \]

MOS signal parameters:

\[g_m = \frac{\partial i_D}{\partial V_{GS}} \bigg|_{V_{GS}, V_{DS}} = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{Tn}) (1 + \lambda V_{DS}) \approx \mu C_{ox} \frac{W}{L} (V_{GS} - V_{Tn}) \]

\[r_0 = \left(\frac{\partial i_D}{\partial V_{DS}} \bigg|_{V_{GS}, V_{DS}} \right)^{-1} \approx \frac{1}{\lambda I_{DS}} \]

\[g_{mb} = \frac{\partial i_D}{\partial V_{BS}} \bigg|_Q = \frac{\gamma g_m}{2 \sqrt{- V_{BS} - 2\phi_p}} \]