SPRING 2020 MATH 54 MIDTERM 2 SOLUTIONS

Q1 True False.
(a) True. Take A with rows equal to any basis of W^{\perp}.
(b) True. Take A to be the matrix of the orthogonal projection onto W.
(c) False. Check that the matrices $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \in H$ but their sum is not.
(d) True. Each of S, T, S^{-1} is invertible and a composition of invertible transformations is invertible, so onto.
(e) False. Consider the identity.
(f) False. If $u \in \mathbb{R}^{2}$ is any nonzero vector, $u^{T} u \neq 0$ is invertible, but $u u^{T}$ is rank one, so not invertible.
(g) True. If $A=P B P^{-1}$ then $x \in \operatorname{Nul}(A) \Longleftrightarrow P^{-1} x \in \operatorname{Nul}(B)$, so they have the same nullity, and by rank nullity the same rank.
(h) False. Every nonzero $1 \times n$ matrix A is row equivalent to e_{1}^{T}, but not every vector in \mathbb{R}^{n} has the same distance from e_{1} and $\operatorname{Row}(A)$.
(i) True. $z \in \operatorname{Row}(A)^{\perp}$, but since $\operatorname{Row}(A)=\mathbb{R}^{2}$ we must have $z=0$.
(j) False. The question is asking whether $\left(P^{-1} x\right)^{T}\left(P^{-1} y\right)=x^{T}\left(P^{-1}\right) T P^{-1} y=x^{T} y$ for every x, y. This is false unless $\left(P^{-1}\right)^{T} P^{-1}=I$, of which there are many examples.
Q3 Examples
(a) Any 2×2 matrix with rank one will do, since by rank nullity it also has nullity 1 , and any two vector spaces of the same dimension are isomorphic. For example $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
(b) Does not exist. If $A=P D P^{-1}$ then $A^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$ is also diagonalizable.
(c) For any basis B it is true that $\left[b_{1}\right]_{B}=e_{1}$ since we have the unique linear combination $b_{1}=1 b_{1}+0 b_{2}$. Thus, the desired basis has $b_{2}=e_{1}$. Taking b_{1} to be any unit vector orthogonal to this (i.e., $\pm e_{2}$) yields two possible bases with this property.
(d) Does not exist. Since $W \neq \mathbb{R}^{3}$ the kernel of proj_{W} is equal to W^{\perp}, which is nontrivial. Thus proj_{W} cannot be one to one.
\#\# Math 54 MT 2 Q4 \#\#
Let $\beta=\left\{1, t, t^{2}\right\}$ be std basis of \mathbb{P}^{2} polynomials, and so any polynomial $\in \mathbb{P}^{2}$ hos the form $p=a_{0}+a_{1} t+a_{2} t^{2}$. Since this is a linear comb of bass vectors, $[P]_{\bar{\beta}}=\left[\begin{array}{l}a_{2} \\ a_{1} \\ a_{2}\end{array}\right]$. This means that $p \mapsto[p]_{\beta}$ is an Bomorphism from \mathbb{P}^{2} onto \mathbb{R}^{3}, meaning vector operations in P^{2} comespand to operations in \mathbb{R}^{3} This way, me can consider T as a composite transtrmation of T_{1} then T_{2}, where T_{1} simply maps a vector in \mathbb{P}^{2} to its corresponding representation in \mathbb{R}^{3}, and where T_{2} is the transformation from $[p]_{\beta}$ to $\left[\begin{array}{l}p, p) \\ p_{1}^{\prime \prime},(0) \\ p(0)\end{array}\right]$. To show that T is invertible, it suffers to show that both $T_{1} \& T_{2}$ are separately invertible. T, 's invertibility is trivial as it is an isomorphism (can always switch bach and forth between representations). Next we show T_{2} 's inversibility.
Since $p(t)=a_{0}+a_{1} t+a_{2} t^{2}, \quad p^{\prime}(t)=a_{1}+2 a_{2} t, p^{\prime \prime}(t)=2 a_{2}$ from calculus,

$$
p(0)=a_{0}, \quad p^{\prime}(0)=a_{1}, \quad p^{\prime \prime}(0)=2 a_{2} .
$$

Therefore, $T_{2}\left(\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right)^{\prime}=\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ a_{2}\end{array}\right]\right.$. We can find a std. matrix for T_{2} by noting that T_{2} simply multiplies the last entry by 2 . Then, $A_{2}\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{ll}a_{2} \\ a_{2} \\ 2 a_{2}\end{array}\right] \Rightarrow A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 2\end{array}\right]$. A_{2} keeps all entries intact except scaling lastentry by 2 . A transformation is muertible se f its std matrix B invertible. A_{2} is dragmal and so As del is $(1)(1)(2) \neq 0 \Rightarrow A_{2}$ is invertible $\Rightarrow T_{2}$ is invertible. To find
 the last term by $1 / 2$ instead of 2 . Then, $A^{-1}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 / 2\end{array}\right]$. Checking, we conclude that $A A^{-1}=1$ so $A_{2}^{-1} B$ std matrix of $T_{2}^{-1}{ }^{1 / 2}$.
Since $T(p)=T_{2}\left(T_{1}(p)\right), T^{-1}(q)=T_{1}^{-1}\left(T_{2}^{-1}(q)\right)$. This means, given a vector $\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=q \in \mathbb{R}^{3}$, we first half the last term, producing $\left[\begin{array}{l}a_{0} \\ a_{2} \\ a_{2}\end{array}\right]$, and then represent it as a polynomial, $a_{0}+a_{1} t+\frac{1}{2} a_{2} t^{2}=p \in \mathbb{P}^{2}$. (T^{-1} acts on a vector $q \in \mathbb{R}^{3}$ ane returns a vector $p \in \mathbb{R}^{2}$)
\#\# Math 54 MT2 Q5 \# \#
Let $X=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \in M_{2 \times 2}$ and $X^{\top}=\left[\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right]$. Smile $M_{2 \times 2}$ is Bomorphir to \mathbb{R}^{4}, we work $\left.\mathbb{R}^{4}\left(\begin{array}{lll}a_{12} & a_{12} & a_{12}\end{array}\right]=\left[\begin{array}{l}a_{1} \\ a_{12} \\ a_{2} \\ a_{22}\end{array}\right]\right)$
Then, S represents u transformation from $\left[\begin{array}{ll}a_{11} \\ a_{12} \\ a_{2} \\ a_{22}\end{array}\right]$ to $\left[\begin{array}{ccc}a_{12} & a_{21} \\ a_{2} & -a_{21} \\ a_{2} & -a_{12}\end{array}\right]$, smell $X-X^{\top}=\left[\begin{array}{cc}0 & a_{12}-a_{21} \\ a_{21}-a_{12} & 0\end{array}\right]$. The stolimatrix for S can be fourel by mopection $\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}a_{11} \\ a_{2} \\ a_{21} \\ a_{22}\end{array}\right]=\left[\begin{array}{cc}a_{12} & a_{21} \\ a_{21} & -a_{12} \\ 0 & 0\end{array}\right]$. From here, we (st dmatrix input transformed output.)
ugh to dragoralise this std matrix, denoted from here as $[S]_{E}$, by finding eigenvalues \&eigenvectors

$$
\begin{aligned}
& \left|[S]_{E}-\lambda I\right|=\left|\begin{array}{cccc}
-\lambda & 0 & 0 & 0 \\
0 & 1-\lambda & -1 & 0 \\
0 & -1 & 1-\lambda & 0 \\
0 & 0 & 0 & -\lambda
\end{array}\right|=-\lambda\left|\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 1-\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=-\lambda-\lambda\left|\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right| \\
& =\lambda^{2}\left(\lambda^{2}-2 \lambda+1-1\right)-\lambda^{2}\left(\lambda^{2}-2 \lambda\right)=\lambda^{3}(\lambda-2)=0 \text { rf } \lambda_{1}=0 \text { or } \lambda_{2}=2 \text {. } \\
& \lambda_{1}=0:\left[\{]_{E}-\lambda I=0:\left[\begin{array}{cccc|c}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]:\right. \\
& \lambda_{2}=2:[3]_{E}-\lambda T: 0:\left[\begin{array}{ccccc|c}
-2 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 \\
0 & -1 & -1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]: x_{1}=0 ; \quad x_{3} ; \quad x_{3} \text { tree } \\
& {\left[\begin{array}{cccc|c}
0 & -1 & -1 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1}=0, \\
x_{4}=0
\end{array}}
\end{aligned}
$$

For λ_{n}, eigerspace is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$. For λ_{2}, eqgerspace $B\left\{\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}$. Therefore, $[S]_{E}=P D P^{-1}-\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]^{2} P^{-1}$ Translating the de bass vectors (columns of P) into a basriby for the diana, mention get a basis of: $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right\}$, and $\beta[S]_{\beta}=D=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
To find the kernel of S, we obseme that $i n$ the diagonal inatrix representation, three of the eager "matrices" corresponded to eigenvalue $\lambda_{1}=0$. This means that any matrix $G M 2 \times 2$ with the eiginpace of $\lambda_{1}=0$ gets mapped to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. The three corresponding matrices to $\lambda_{1}=0$ are $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$, whet together form a basis for $\operatorname{ker}(s)$.
\#\# Math 54 MT2 Qb \#\#
a) Note that because A is upper triangular, it a eigenvalues, $\lambda_{1}=1, \lambda_{2}=-\lambda_{1}$, $\lambda_{2}=2$, line on its diagonal. Since there are 3 distmet eigenvalues for this 3×3 matrix, A is dragonaltsech $6: A=P D P^{-1}$ for some muestise P and obagonal D The strategy forthrs problem uses the fact that $A^{k}=P D^{k} P^{-1} \quad\left(A^{2}=\left(P D P^{-1} P D P^{-1}\right)=P D^{2} P^{-1}\right.$, and soon) To diagonalize $A_{\text {, }}$ we find its eigenvectors comespondang to $A_{1}, \lambda_{2}, \lambda_{3}$.

$$
\begin{aligned}
& \lambda_{1}, A-\lambda I=0:\left[\begin{array}{cccc|c}
0 & 2 & 3 & 0 \\
0 & -1 & 4 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow x_{1} \text { since, } x_{2}=x_{3}=0 \\
& \lambda_{2}: A-\lambda I=0:\left[\begin{array}{lll|l}
2 & 2 & 3 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 2 & 0 \\
0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow A_{2} \text { force, } x_{1}=-x_{2}, x_{3}=0 \\
& \lambda_{3}: A-\lambda I=0 \cdot\left[\begin{array}{ccc|c}
-1 & 2 & 3 & 0 \\
0 & -3 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -17 / 3 & 0 \\
0 & 1 & -4 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow y_{3} \text { bree, } \begin{array}{l}
x_{1}=17 / 3 x_{3} \\
x_{2}=4 / 3 x_{3}
\end{array}
\end{aligned}
$$

Then, the eigenvectors corresponding to $\lambda_{1}=1, \lambda_{2}=-1, \lambda_{3}=2$, are $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$, and $\left[\begin{array}{c}17 \\ 4 \\ 3\end{array}\right]$, respectively. Thus, $A=P D P^{-1}=$ $=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 4 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 1 & -7 \\ 0 & -1 & 4 / 3 \\ 0 & 0 & 1 / 3\end{array}\right]$, where P^{-1} was obtained by row-redueng $[P \mid I]$. Using $A^{k}=P D^{k} P^{-1}$ and that D^{k} is just a matrix with the entries on the diagonal raised to the $k^{\text {th }}$ power, $A^{99}=\left[\begin{array}{ccc}1 & 1 & 17 \\ 0 & -1 & 4 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{cccc}190 & 0 & 0 \\ 0 & -4^{49} & 0 \\ 0 & 0 & 2^{91}\end{array}\right]\left[\begin{array}{ccc}1 & 1 & -7 \\ 0 & -1 & 4 / 3 \\ 0 & 0 & 1 / 3\end{array}\right]=\left[\begin{array}{cccc}1 & -1 & 17 & 2^{99} \\ 0 & 1 & 580 \\ 0 & 0 & \text { some other }\end{array}\right]\left[\begin{array}{ccc}1 & 1 & -7 \\ 0 & -1 & 1 / 3 \\ 0 & 0 & 1 / 3\end{array}\right]$. We see that because the third entry of the second col of P^{-1} is 0 and that the second col of A^{99} is a linear combination of columns of (PD ${ }^{99}$) with weights as the second col of P^{-1}, the second col of

$$
A^{a a}=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-1\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \text {. }
$$

b) Nose that A is muertible because it is the product of muertible matrices: P detrued to be inversitile but also beconge it B a matrix with imine. ergenvectios as columns, and D because $\operatorname{det}(D)=\lambda_{1} \lambda_{2} \lambda_{3} \neq 0$. Note that because $A=P D P^{-1}$ and A and each of Q, D, P^{-1} are inverance, $A^{-1}=\left(P D P^{-1}\right)^{-1}=P^{-1} D^{-1} P$. Spue $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$ and corresponding eigereralues of A^{-1} are $\lambda_{1}{ }^{-1}, \lambda_{2}^{-1}, \lambda_{3}{ }^{-1}$ respectrvety, $D^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & - & 1 / 2 \\ 0 & 0\end{array}\right]$. Then, $A^{-99}=\left(A^{-1}\right)^{49}=P^{-1}\left(D^{-1}\right)^{99} P=\left[\begin{array}{ccc}1 & 1 & -7 \\ 0 & -1 & 4 / 3 \\ 0 & 0 & 1 / 3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 / 29\end{array}\right]\left[\begin{array}{ccc}19 & 1 & 17 \\ 0 & -1 & 4 \\ 0 & 0 & 3\end{array}\right]$ $=\left[\begin{array}{ccc}1 & -1 & \# \\ 0 & 1 & \# \\ 0 & 0 & \#\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 17 \\ 0 & -1 & 4 \\ 0 & 0 & 3\end{array}\right]$ Using smear log R to (a) in finding A99's second, we see that second col of $A^{99}=1\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right]-1\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$. Thus, since second col of $\left(A^{99}-A^{-99}\right)=$ second col of A^{91} - second cot of A, 99 second col of $\left(C=A^{99}-A^{-99}\right)=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]-\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
\#\# Math 54 MT Q7 \#\#
$A=\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & -1 & 2 & 1\end{array}\right]$. To find $N u \mid A$, we solve $A x=0$:

$$
\left[\begin{array}{cccccc}
1 & 0 & -1 & -1 & 0 \\
0 & -1 & 2 & 1 & 0
\end{array}\right]-\left[\begin{array}{cccc|c}
1 & 0 & -1 & -1 & 0 \\
0 & 1 & -2 & -1 & 0
\end{array}\right] \Rightarrow \begin{array}{lll}
x_{1}=x_{3}+x_{4} & x_{3} \text { free } \\
x_{2}=2 y_{3}+y_{4} & x_{4} \text { free. }
\end{array}
$$

A bass for $\operatorname{mul} A=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$. Furn this basis, we final un orthegonal basis by Gram-Schmielt!
Let $b_{1}=v_{1}=\left[\begin{array}{c}1 \\ 2 \\ 0\end{array}\right]$. Then, $b_{2}=v_{2}-p r o j_{b_{1}} v_{2}=v_{2}-\frac{v_{2} \cdot b_{1}}{b_{1} \cdot b_{1}} b_{1}$ $=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-\frac{3}{6}\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{c}-1 / 2 \\ -1 \\ 1 / 2 \\ 0\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ -9 / 2 \\ 1\end{array}\right]$. Then, $\left\{b_{1}, b_{2}\right\}$ firm an basis of NulA Usmy this bass, we proceed urth orthogonal decamp! To fuel \hat{b} ENUIA closest to b, we solve for projb Null $=\hat{b}$, which is the closest vector to b in $N_{n} l$ A by best approx theorem. prof bini $=\frac{b \cdot b_{1}}{b_{1} b_{1}} b_{1}+\frac{b \cdot b_{2}}{b_{2} \cdot b_{2}} b_{2}$, where $\left\{b_{1}, b_{2}\right\}$ B the above orthgoral bass for NW/ A. Then, $S=\operatorname{Noj}_{\text {MW IA }}=\frac{1}{6}\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right]+\frac{1 / 2}{3 / 2}\left[\begin{array}{c}1 / 2 \\ 0 \\ -1 / 2 \\ 1\end{array}\right]$ $=\left[\begin{array}{l}1 / 6 \\ 1 / 3 \\ 1 / 6 \\ 0\end{array}\right]+\left[\begin{array}{c}1 / 6 \\ 0 \\ -1 / 6 \\ 1 / 3\end{array}\right]=\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$. This vector \hat{b} B the closest puma to b that is m $\operatorname{Nu}(A$.
Lettry $W=N u, A, b=y+z$ for $y \in W$ and $z \in W^{\perp}$, we see that becarese $\vec{b} B$ the orthogonal projection of b onto $W=$ Nu A (component of $b m W$), $y=\hat{b}=\left[\begin{array}{c}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$. Then, we can solve for $z: ~ z=b-y=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{l}i / 3 \\ 1 / 3 \\ 0 / 3\end{array}\right] \stackrel{[1 / 3}{ }\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -1 / 3 \\ -1 / 3\end{array}\right]$.

$$
\therefore y=\left[\begin{array}{l}
1 / 3 \\
0 / 3 \\
1 / 3
\end{array}\right]=\text { pro } j_{N / 4} \quad=\text { closest point in Now A tob } b \text {, and } z=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right] \text {. }
$$

