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• You may consult three handwritten double-sided sheets of notes. Apart from that, you may not look at
books, notes, etc. Calculators, phones, computers, and other electronic devices are prohibited unless
they are part of the recording submission.

• There are 9 questions on this exam, worth a total of 100 points.

• No clarification will be provided on the exam questions.

• Note that the questions vary in difficulty

• You may, without proof, use theorems and facts that were proven in the lecture, notes, discussions,
and/or in homeworks unless explicitly mentioned otherwise.

• You have 150 minutes to work on the exam. You will then have 45 minutes for scanning and
uploading your answers. Late submissions will be penalized.

• You may use up to min(x,15) minutes of the scanning time to continue working on your exam if
you have lost x minutes due minor technical issues during the exam.
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1 (19 POINTS) SHORT ANSWERS I

1 (19 Points) Short Answers I
Unless otherwise stated, you must show all your work in order to get full credit.

(a) (4 points) Prove the following statement using induction: given n ∈ N, if S is a set of cardinality n,
then the power set of S has cardinality 2n.

Answer: Base case: P(0) is true, because the power set of /0 only contains /0.

Inductive Hypothesis: If S is a set of cardinality n, then the power set of S has cardinality 2n.

Inductive Step: Consider a set S of cardinality n+1. Consider S−{x} for some x ∈ S. Then S−{x}
is a set of cardinality n. By inductive hypothesis, the power set of S−{x} has 2n elements.

For each subset A of S−{x}, there are exactly two subsets of S, namely A and A∪{x}.
Thus, the power set of S has 2n ·2 = 2n+1 elements.

(b) (3 points) For each of the following sets, state whether it is finite, countably infinite, or uncountable.
No need to justify/show work.

(i) The set of prime numbers Answer: Countably infinite.

(ii) The set of infinite sequences of integers Answer: Uncountable.

(iii) The set of computer programs Answer: Countably infinite.

(c) (2 points) Show that if k > 0 is an integer, then k+1 is coprime to k2 +2k.

Answer: We show gcd(k2 +2k,k+1) = 1.

gcd(k2 +2k,k+1) = gcd(k+1,k) = gcd(k,1) = gcd(1,0) = 1.

Since gcd(k2 +2k,k+1) = 1, k+1 and k2 +2k are coprime.

Alternative solution: Notice that for x > 0, we have gcd(x+1,x) = 1; this is because gcd(x+1,x) =
gcd(x,1). In particular, we have gcd(k,k+1) = gcd(k+1,k+2) = 1.

For contradiction, assume gcd(k(k+2),k+1) 6= 1. Then there exists a prime p such that p | k(k+2)
and p | k + 1. Notice that since p is prime, p | k(k + 2) implies p | k or p | k + 2. However, since
gcd(k,k+1) = 1, we can’t have p | k. Similarly, since gcd(k+1,k+2) = 1, we can’t have p | k+2.
Hence, gcd(k(k+2),k+1) = 1, i.e. k+1 and k2 +2k are coprime.

(d) (2 points) Compute the following: (∑10
i=1 i16) mod 17.

Answer: 10. Using FLT: ap−1 ≡ 1 (mod p) for prime number p and a ∈ {1,2, . . . , p−1}, we get

10

∑
i=1

i16 ≡
10

∑
i=1

1 = 10 (mod 17).

Therefore, (∑10
i=1 i16) mod 17 = 10.

(e) (3 points) Solve the following system of congruences for x (i.e. solve for the unique solution modulo
60).

x≡ 2 (mod 3),

x≡ 3 (mod 4),

x≡ 4 (mod 5).
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1 (19 POINTS) SHORT ANSWERS I

Answer: x≡ 59 (mod 60). Using the notations from CRT lecture, we have

M = 3 ·4 ·5 = 60

M1 =
M
3

= 20, M2 =
M
4

= 15, M3 =
M
5

= 12.

Compute an inverse of 20 modulo m1 = 3. Notice that 20 ·2 = 40≡ 1 (mod 3), so let y1 = 2.

Similarly, we want to compute an inverse of 15 modulo m2 = 4. Since 15 · 3 = 45 ≡ 1 (mod 4), let
y2 = 3.

Lastly, compute an inverse of 12 modulo m3 = 5. Since 12×3 = 36≡ 1 (mod 5), let y3 = 3.

Hence, 2y1M1+3y2M2+4y3M3 = 2 ·2 ·20+3 ·3 ·15+4 ·3 ·12 = 80+135+144≡ 20+15+24 = 59
(mod 60).

Alternative solution: Let x′ = x+1. Consider the new system of congruences involving x′:

x′ ≡ 0 (mod 3),

x′ ≡ 0 (mod 4),

x′ ≡ 0 (mod 5).

Then x′ = 0 is a solution. By CRT, x′ ≡ 0 (mod 60), which gives x≡−1≡ 59 (mod 60).

(f) (3 points) Let p,q and r be polynomials of degree at most 2 over GF(23) such that

p(1) = 1 p(2) = 5 p(3) = 4

q(1) = 3 q(2) = 7 q(3) = 15

r(1) = 1 r(2) = 3 r(3) = 1

Let f (x) = p(x)+2q(x)−5r(x). Find f (x). Simplify your answer for full credit.

Hint: You do not need to calculate the polynomials p, q, r.

Answer: f (x) = 2x. We can compute the values of f at 1,2 and 3 directly by evaluating:

f (1) = 1+2 ·3−5 ·1 mod 23 = 2

f (2) = 5+2 ·7−5 ·3 mod 23 = 4

f (3) = 4+2 ·15−1 ·5 mod 23 = 6

We know f has degree at most 2 because the degree of p+q is at most max(p,q). Thus, there is only
one polynomial which satisfies f (1) = 2, f (2) = 4, f (3) = 6 in GF(23). Clearly, the polynomial
f (x) = 2x satisfies this.

(g) (2 points) Alice wants to send Bob a message of length n while guarding against ke erasure errors and
kg general errors. How many total packets does she need to send?

Answer: n+ ke + 2kg. If m is the number of packets, after ke erasures, one has m− ke packets; to
recover from 2kg errors, m− ke = n+2kg packets are required. So m = n+ ke +2kg.
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2 (15 POINTS) SHORT ANSWERS II

2 (15 Points) Short Answers II
Unless otherwise stated, you must show all your work in order to get full credit.

(a) (2 points) We roll a 6-sided fair die 4 times. How many possible strictly ascending sequences of
numbers are there?

Answer:
(6

4

)
=

6!
2!4!

. We can choose 4 out of the 6 numbers {1,2,3,4,5,6}. Then there is only one

ascending order that we can have, hence the answer is
(6

4

)
=

6!
2!4!

.

(b) (3 points) We choose n numbers from {1,2, . . . ,9} uniformly at random with replacement and define
x as the product of these numbers. What is the probability that x is divisible by 35? (n is a positive
integer.)

Answer: 1− 2
(8

9

)n
+
(7

9

)n. We will compute the probability of the complement which is the event
that we do not choose both 5 or 7 in our process, which is equivalent to not choosing 5, or not choosing
7.

P[x is divisible by 35] = 1−P[no 5∪no 7]

By inclusion/exclusion, P[no 5∪no 7] is the probability of not choosing 5,
(8

9

)n, plus the probability
of not choosing 9, also

(8
9

)n, minus the probability of both,
(7

9

)n.

P[no 5∪no 7] = P[no 5]+P[no 7]−P[no 5∩no 7] =
(

8
9

)n

+

(
8
9

)n

−
(

7
9

)n

,

where this is the complement probability. So the answer is

P[x is divisible by 35] = 1−2
(

8
9

)n

+

(
7
9

)n

.

(c) (3 points) Give a combinatorial proof for the following equation. (An algebraic proof receives 0
points.) (

n
2

)
=

n−1

∑
i=1

i

Answer: LHS: Choose a pair from n items.
RHS: The first item can be paired with n−1 items, the second items can be paired with n−2 items to
make a new pair, ..., the ith item can be paired with n− i items to create new pairs and so one. This is
the ∑

n−1
i=1 (n− i) = ∑

n−1
i=1 i.

Alternatively: RHS: We divide the pairs according to the lowest number that is in a pair. The number
of pairs where the lowest numbered item is i, is n− i as there are n− i items that have a higher number.
This is the ∑

n−1
i=1 (n− i) = ∑

n−i
i=1.

(d) (3 points) How many subsets of {1,2, ...,2n} are there that do not contain any elements x and y
satisfying the equation x+ y = 2n+1? For example, x = 1 and y = 2n cannot be in the subset at the
same time. (n is a positive integer.)
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2 (15 POINTS) SHORT ANSWERS II

Answer: ∑i
(n

i

)
2i = 3n. We must ensure that x and y= 2n+1−x are not both chosen for x= 1,2, ...,n.

We may either choose x or choose y or choose neither. Hence, we have 3 options for each pair of (x,y)
and there are n such pairs. Hence we can make 3n subset with this property.

Alternatively: Assume we have n pairs {(1,2n),(2,2n− 1), . . . ,(n,n+ 1)}. Since we can have at
most one from each pair in our desired subset we can count the number of subsets by choosing i pairs
out of the given n pairs,

(n
i

)
, and discard the remaining pairs. Then we have two options to choose

from each pair so
(n

i

)
2i. Since the number of pairs we choose can be any number from i = 0 to i = n

then by the binomial theorem we get ∑
i=n
i=0
(n

i

)
2i = 3n.

(e) (2 points) We have n fair coins and m biased coins in a bag. The biased coins land on heads with
probability p. Without looking, we pick one uniformly at random and flip it. It lands heads. What is
the probability that it is a fair coin, given that it landed heads? Leave your answer in terms of n,m and
p.

Answer:
n

n+2pm
. Let F denote the event that we picked a fair coin and H denote the event that we

flipped a heads.

P[F |H] =
P[H|F ]P[F ]

P[H]
=

(1
2)(

n
n+m)

(1
2)(

n
n+m)+ p · m

n+m

=
n

n+2pm

(f) (2 points) Let X ∼ Poisson
(1

2

)
. Calculate E[X!]. (Note: we really mean X!, as in "the factorial of

X".) Recall that for |r|< 1,∑∞
i=0 ari = a

1−r

Answer: 2e−
1
2 . For X = x we have P[X = x] =

(1
2)

x

x!
e−

1
2 , so

E[X!] =
∞

∑
x=0

x!P[X = x] =
∞

∑
x=0

x!
(1

2)
x

x!
e−

1
2 =

e−
1
2

1− 1
2

= 2e−
1
2
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3 (6 POINTS) JOINTS

3 (6 Points) Joints

Let X and Y be two continuous random variables. The joint density of (X ,Y ) is uniform on the shaded
region below, and 0 outside the shaded region. Mathematically, the figure consists of a rectangle.

(a) (1 point) What is the joint density fX ,Y on the shaded region?

Answer: 1
2 , because the density must integrate to 1.

(b) (2 points) Set up, but do not evaluate the integrals for the values of fX(x) and fY (y) on the shaded
region.

Answer:

fX(x) =
∫ 0

−1

1
2

dy

fY (y) =
∫ 1

−1

1
2

dx

(c) (3 points) Are X and Y independent? Justify your answer.

Answer:

fX(x) =
∫ 0

−1

1
2

dy =
1
2

fY (y) =
∫ 1

−1

1
2

dx =
1
1

Since fX ,Y = fX(x) fY (y), X and Y are independent. Alternatively, one may compute the conditional
densities and show that they are the same as the marginals on the shaded region.

1-1

-1
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4 (5 POINTS) CUBES

4 (5 Points) Cubes
Suppose you have a 3×3×3 inch cube of solid brown wood. You paint all 6 faces white and chop it up into
1×1×1 inch subcubes. There are 27 subcubes in total. You then toss all of these in a bag, and with your
eyes closed, you take one out and roll it. Opening your eyes, you notice that the 5 faces that are showing are
brown. What’s the probability that the face you can’t see (i.e. 6th face) is also brown? Show all your work
for full credit.

Answer: Define the following events.

• Let O be the event that you observe 5 brown faces.

• Let B5 be the event that the subcube you drew has 5 brown faces. There are 6 such cubes, so P(B5) =
6

27 .

• Let B6 be the event that the subcube you drew has 6 brown faces. P(B6) =
1
27 .

P(B6 | O) =
P(O | B6)P(B6)

P(O | B6)P(B6)+P(O | B5)P(B5)

P(O | B6) = 1 and P(O | B5) =
1
6 . The answer is

1 · 1
27

1 · 1
27 +

1
6 ·

6
27

=
1
2
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5 (12 POINTS) IF IT’S ANY INDICATION

5 (12 Points) If It’s Any Indication
Let G be an undirected graph on n vertices where each of possible edge of the graph is included with
probability p, independent from every other edge. This means that for each edge e of the

(n
2

)
total edges,

that edge e is a part of G with probability p, and is missing from the graph with probability 1− p. A vertex
is called isolated if it is adjacent to no vertices of the graph.

For the following parts, your answer should be an expression in terms of n and p. Show all your work
for full credit.

(a) (2 points) Find the expected degree of a vertex.

Answer: Let D be the degree of the vertex v. Note that each of the n−1 other vertices are adjacent to
v independently with probability p. This means that D∼ Binomial(n−1, p), so E[D] = (n−1)p.

Alternatively: Let
D = I1 + . . .+ In−1,

where I j is the indicator that the jth other vertex is adjacent to v. Then

E[D] = E[I1 + . . .+ In−1]

= E[I1]+ . . .+E[In−1]

= (n−1)E[I1]

= (n−1)p.

(b) (2 points) Find the variance in the degree of a vertex.

Answer: Using the fact that D∼ Binomial(n−1, p), Var[D] = (n−1)p(1− p).

Alternatively: Use the definition from part (a) and the independence of the indicators. Recall that the
variance of a Bernoulli(p) random variable is p(1− p).

Var[D] = Var [I1 + . . .+ In−1]

= Var[I1]+ . . .+Var[In−1]

= (n−1)Var[I1]

= (n−1)p(1− p).

(c) (4 points) Find the expected number of isolated vertices.

Answer: Let M be the number of isolated vertices in the graph. Then

M = I1 + . . .+ In,

where I j is the indicator of the event that the jth vertex is isolated. A vertex is isolated if each of the
n−1 neighbors are not adjacent to it, each with probability 1− p. Therefore

I j =

{
1 with probability (1− p)n−1

0 with probability 1− (1− p)n−1.
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5 (12 POINTS) IF IT’S ANY INDICATION

By linearity of expectation,

E[M] = E[I1 + . . .+ In]

= E[I1]+ . . .+E[In]

= n ·E[I1]

= n(1− p)n−1.

(d) (4 points) Find the variance of the number of isolated vertices.

Answer: Note that the indicators are dependent; if we know that n−1 of the vertices are isolated, then
the last vertex must also be isolated. In general, a vertex being isolated will increase the probability
that other vertices are isolated.

Use the definition from part (c) and account for the fact that indicators are dependent.

Var[M] = E[M2]−E[M]2

We have E[M] from part (b), and we can calculate E[M2] by multiplying out the product of indicators.

E[M2] = E[(I1 + . . .+ In)
2]

= E

[
n

∑
i=1

I2
i

]
+E

[
n

∑
i=1

n

∑
j 6=i

IiI j

]

=
n

∑
i=1

E[I2
i ]+

n

∑
i=1

n

∑
j 6=i

E[IiI j]

= n ·E[I2
1 ]+n(n−1)E[I1I2]

= n ·
(
(1− p)n−1

)
+n(n−1) ·

(
(1− p)n−1(1− p)n−2

)
= n(1− p)n−1 +n(n−1)(1− p)2n−3.

Var[M] = n(1− p)n−1 +n(n−1)(1− p)2n−3− (n(1− p)n−1)2

Alternatively: Break the variance into a sum of covariances.

Var[M] = Var[I1 + . . .+ In]

=
n

∑
i=1

Var[Ii]+
n

∑
i=1

n

∑
j 6=1

Cov[Ii, I j]

= n ·Var[I1]+n(n−1) ·Cov[I1, I2].

Var[I1] = (1− p)n−1 (1− (1− p)n−1) .
Cov[I1, I2] = E[I1I2]−E[I1]E[I2]

= (1− p)n−1(1− p)n−2−
(
(1− p)n−1)2

= (1− p)2n−3− (1− p)2n−2

= (1− p)2n−3 (1− (1− p)1)
= p(1− p)2n−3.

Var[M] = n(1− p)n−1 (1− (1− p)n−1)+n(n−1)p(1− p)2n−3.

These answers are equivalent.
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6 (10 POINTS) MARKOV CHAINS

6 (10 Points) Markov Chains
Kevin and Shahzar are playing a game with 2 bins. On each turn, Shahzar picks a bin uniformly at random.
If the bin already has a ball in it, Shahzar does nothing. If the bin doesn’t have a ball, Shahzar throws a ball
into that bin∗∗. On the same turn, Kevin picks a bin uniformly at random, independently of Shahzar, and
empties it (removes any balls that are in the bin). For each turn, Shahzar goes first, then Kevin.
∗∗ Note that this means the maximum number of balls in any bin is 1.

(a) (4 points) For a particular bin, construct a two-state Markov chain for the number of balls it contains
at the end of a turn. Clearly indicate the states and transition probabilities of the chain.

Answer: We can model a given bin as a two state Markov chain with states 0 and 1.

We first consider the probability that the bin is empty gets a ball thrown into it. This happens only
when Shahzar picks the bin and Kevin doesn’t.

P(0→ 1) =
1
2
· 1

2
=

1
4

So P(0→ 1) = 1/4 and P(0→ 0) = 3/4.

Now we consider the probability that the bin has a ball in it and becomes empty. This happens if
Kevin picks the bin.

P(1→ 0) =
1
2

So P(1→ 0) = 1/2 and P(1→ 1) = 1/2.

We can put this information into a probability transition matrix:

0 1[ ]
0 3/4 1/4

1 1/2 1/2

While this is the correct answer, we did not carry forward any penalty for parts (b) and (c), so long as
your answer to part (a) was a valid Markov chain on two states. In other words, for parts (b) and (c),
grading was based on your answer for part (a) assuming a valid chain, and not the correct chain.

(b) (2 points) Does the Markov chain converge to a unique invariant distribution? Justify your answer.

Answer: Yes, the Markov chain has an invariant distribution because it is irreducible and aperiodic.
We can see that it is irreducible because each state communicates to the other state.

To be explicit, we construct the loop 0→ 1→ 0 through the Markov Chain, which visits every state
once and loops back on itself. This means each state can communicate with each other state.

We can see that it is aperiodic because each state has a path to itself (self-loop). To be explicit, note
that 0→ 0 is a valid path to return to state 0. So d(0) = gcd{1,2, . . .} = 1. Therefore the chain is
aperiodic.

(c) (4 points) Find the invariant distribution(s) of the Markov chain. Show all your work for full credit.

Answer: We solve for the invariant distribution π of the Markov chain.

π = [π0 π1] = [π0 π1] ·
[

3/4 1/4
1/2 1/2

]
10



6 (10 POINTS) MARKOV CHAINS

So we have the following equations:

π0 =
3π0

4
+

π1

2

π1 =
π0

4
+

π1

2

Solving, we get π0 = 2π1. Since π0 +π1 = 1, we have 2π0 +π1 = 1, so π1 = 1/3 and π0 = 2/3.
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7 (11 POINTS) DISTRIBUTED DISTRIBUTION

7 (11 points) Distributed Distribution
Robel took his Organic Chemistry exam and wanted to see the distribution of scores. Since the web portal
site was down, Robel was unable to access the true distribution. Robel decided to survey students, and get
an estimate of the distribution for himself.

Let n be the number of students who fill out his survey. For each student i who fills out his survey, the score
they report Xi follows Xi ∼ Exp

(
1
µ

)
, where µ is the true mean score on the exam. All Xi are independent

and identically distributed (i.i.d.), with mean µ and variance µ2. Note that this means the reported scores
can be anywhere in [0,∞).

For the following parts, show all your work for full credit.

(a) (2 points) Robel was looking through the survey results as they came in and saw a score above 90.
However, he does not remember the exact score. What is the expected value of the reported score he
saw, given it was above 90? You may use µ in your answer.

Answer: Let T be the random variable corresponding to the score he saw. We know that T ∼
Exp

(
1
µ

)
. We are interested in E[T | T > 90]. But this is the same as 90+E[T ′], where T ′ is a fresh

exponential, since the exponential distribution is memoryless. Thus, the answer is 90+µ .

Robel is now interested in estimating the true mean of the distribution. It then makes sense to consider

µ̂n =
1
n

n

∑
i=1

Xi, which can be interpreted as the sample mean of the reported scores from the survey.

(b) (2 points) Determine E[µ̂n], and Var(µ̂n).

Answer:

E[µ̂n] = E

[
1
n

n

∑
i=1

Xi

]
=

1
n

n

∑
i=1

E[Xi] =
1
n
·n ·µ = µ

Var(µ̂n) = Var

(
1
n

n

∑
i=1

Xi

)
=

1
n2

n

∑
i=1

Var(Xi) =
1
n2 ·n ·µ

2 =
µ2

n

The first line is by linearity of expectation. The second line is due to the fact that the variance of a
sum of independent random variables is the sum of the variances.

(c) (3 points) Using Chebyshev’s inequality, find the tightest upper bound on the probability that the
sample mean µ̂n is at least 10 points above the true mean µ .
Answer:

P(µ̂n−µ ≥ 10)≤ P(|µ̂n−µ| ≥ 10)≤ Var(µ̂n)

102 =
µ2

n
100

=
µ2

n
100

=
µ2

100n
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7 (11 POINTS) DISTRIBUTED DISTRIBUTION

Since there is no guarantee of symmetry, the best bound we can get with Chebyshev’s is the two-tail
bound P(|µ̂n−µ| ≥ 10)≤ µ2

100n . Note that if the distribution were symmetric about µ , then we would

be able to come up with the tighter one-tail bound P(µ̂n−µ ≥ 10)≤ µ2

2×100n , but we CANNOT do that
since the exponential distribution is not symmetric about its mean.

(d) (4 points) Robel knows that 100 students filled out his survey. He later finds out from the web portal
site that the true mean was actually 50. Using the Central Limit Theorem as a means of approximation,
What the probability that µ̂n is not within 1 point of the true mean µ = 50? Leave your answer
in terms of the standard normal CDF Φ.

Answer:

P(|µ̂n−µ| ≥ 1) = 2P
(

µ̂n−µ

µ/
√

n
≥ 1

µ/
√

n

)

Let Z =
µ̂n−E[µ̂n]√

Var(µ̂n)
=

µ̂n−µ

µ/
√

n
.

The CLT states that Z ∼N (0,1).

P(|µ̂n−µ| ≥ 1)≈ 2P
(

Z ≥
√

n
50

)
P
(

Z ≥
√

n
50

)
= P

(
Z ≥
√

100
50

)
= P(Z ≥ 0.2)

= 1−Φ(0.2)

⇒ P(|µ̂n−µ| ≥ 1)≈ 2(1−Φ(0.2))
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8 (11 POINTS) GRAPHS, POLYNOMIALS, AND COUNTING: THE ULTIMATE CS70
CROSSOVER!

8 (11 points) Graphs, Polynomials, and Counting: The Ultimate CS70
Crossover!

Recall that a graph is n-colorable if you can color the vertices using n colors such that no adjacent vertices
have the same color. Now instead of just validity, we can count also how many colorings (if any) exist. We
define PG(x) as the number of ways of coloring a graph G with x colors. For example, if PG(n) = 0 for a
graph G and a positive integer n, then G is not n-colorable (there are zero ways to n-color G).

It turns out that this function is always a polynomial for a given graph G. Assume vertices are distinguish-
able. For each of the following parts, show all your work for full credit.

(a) (2 points) Let G be the triangle graph (a complete graph of 3 vertices). Calculate PG(5).

Answer: 60. There are 5 choices of color for the first vertex, then 4 choices for the next vertex, then
3 for the last vertex. Thus, by first rule of counting, 5 ·4 ·3 = 60 colorings.

(b) (4 points) Let G be a complete graph of n vertices.

(i) Find the polynomial PG(x).
Answer: There are x choices for the first vertex, then x−1 for the next vertex and so on. Thus

PG(x) is x · (x−1) · (x−2) · . . . · (x− (n−1)).

(ii) Use the polynomial you found in part (i) to show that the minimum number of colors needed to
color the complete graph of n vertices is n.

Answer: Note that if PG(x)≥ 0 for some x, that means the graph can be colored with x colors.
In this case, since 0,1,2, . . . ,n−1 are all roots of the polynomial, they each have 0 colorings. n
is the smallest value of x such that PG(x) is positive, and thus the graph is n-colorable.

(c) (3 points) Let G be a tree of n vertices. Find the polynomial PG(x).

Answer: x(x−1)n−1. Pick a root, and we will first color the root, and then color vertices in depth 1,
and then color vertices in depth 2, and so on.

There are x choices for the root. When we color a vertex v in depth k, notice that v is adjacent to
exactly one colored vertex (which is a vertex in depth k−1), hence there are x−1 choices for v. This
is true for every non-root vertex in the graph. Thus PG(x) = x(x−1)n−1. (This is like HW4 Q2b!).

(d) (2 points) Let G be a graph of n vertices that contains at least one edge. Prove that the sum of the
coefficients in PG(x) is 0.

Answer: PG(1) = an+an−1+ ...+a0 is the number of ways to color G with 1 color. If G is non-empty,
it contains an edge, then it can not be colored with 1 color so this sum must be 0.

14



9 (11 POINTS) LINEAGE TRACING

9 (11 points) Lineage Tracing
Consider the following model for tracking cell division. A petri dish begins with a single white cell. At the
start of each time step t ≥ 1, every cell in the petri dish will divide into two cells that inherit its color∗∗. Then,
each white cell in the petri dish will become green with probability p, independently. Then the timestep ends.

∗∗This means at the end of any timestep t, there are 2t cells in the dish.

For each of the following parts, show all your work for full credit.

(a) (2 points) What is the probability that a particular cell at the end of timestep n is green?

Answer: The probability that a particular cell at the end of timestep n is green is P[geom(p) ≤ n] =
1− (1− p)n.

(b) (3 points) The descendants of a cell are the two cells that it divided into and all of their descendants.
A cell is an ancestor of any of its descendants. Note that the first cell in the petri dish is the ancestor
of all cells.

Suppose we observed that a cell is green at the end of time step n. Given this observation, what is the
probability that the green mutation occurred in an ancestor of the observed cell at timestep t, where
t ≤ n?

Answer: If X ∼ Geometric(p), the probability that the mutation occurred in an ancestor at level t is
equaled to P[X = t | X ≤ n] which is:

P[X = t ∩X ≤ n]
P[X ≤ n]

=
p(1− p)t−1

1− (1− p)n

(c) (3 points) What is the expected number of green cells at the end of time step n? Give your answer as
an expression in terms of n and p.

Answer: Let Yi be the indicator for the ith cell at the end of timestep n. Then the desired quantity
is E[∑n

i=1Yi] = ∑
n
i=1E[Yi]. The probability that a particular cell at the end of timestep n is green is

P[geom(p)≤ n] = 1− (1− p)n. So, E[Yi] = 1− (1− p)n. The number of cells at the end of timestep n
is 2n. Thus, we have that the expected number of green cells at the end of timestep n is 2n(1−(1− p)n)

(d) (3 points) Suppose p > 1/2. Prove that as n tends to ∞, the probability that every cell at time step n is
green tends to 1.

Answer: Let W be the number of white cells at level n. We must show that as n→∞, Pr[W ≥ 1]→ 0.
We can do this two ways:

Using indicators like last time, we see that E(W ) = (2(1− p))n which tends to 0 as n tends to ∞

since p > 1/2 implies that 2(1− p)< 1. Using Markov’s inequality, we see that:

P[W ≥ 1]≤ E(W )

1
= (2(1− p))n→ 0

Alternatively, we can note that for each cell, the probability of not being green is (1− p)n so union
bounding over all 2n cells, we have that the probability that any cell remains not green is at most
(2(1− p))n which tends to 0 as n→ ∞
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