
CS 170 Sample Exam.
Spring 2020 Final Exam

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

Welcome to the CS 170 final!

(a) There is no negative scoring for this exam.
(b) All questions in this exam have the same weight.
(c) This tool shows you when you have unsaved questions. Make sure to save all your work before finishing.
(d) Make sure to check your email. We have sent a PDF of the exam for you to use, in case you encounter

technical difficulties with this tool. Only use the exam PDF in your email as a last resort.

You can complete and submit the name and SID questions before the exam starts.

(a) (1 pt) What is your full name?

(b) (1 pt) What is your student ID number?

Exam generated for <EMAILADDRESS> 3

1. Exam Problems

(a) i. (1 pt) Suppose that limn→∞
f(n)
g(n) =∞. Select all that must be true.

2 f(n) = O(g(n))

� f(n) = Ω(g(n))

2 f(n) = Θ(g(n))

2 None of the other options

ii. (1 pt) Suppose that limn→∞
f(n)
g(n) =∞. Select all that could possibly be true.

2 f(n) = O(g(n))

� f(n) = Ω(g(n))

2 f(n) = Θ(g(n))

2 None of the other options

iii. (1 pt) Suppose that limn→∞
f(n)
g(n) does not exist. Select all that must be true.

2 f(n) = O(g(n))

2 f(n) = Ω(g(n))

2 f(n) = Θ(g(n))

� None of the other options

iv. (1 pt) Suppose that limn→∞
f(n)
g(n) does not exist. Select all that could possibly be true.

� f(n) = O(g(n))

� f(n) = Ω(g(n))

� f(n) = Θ(g(n))

2 None of the other options

v. (1 pt) Choose all statements which are true, if f(n) = n3.

2 f = O(27log3(
√
n))

2 f = o(10n3)

� f = ω(n)

� f = Ω(n3)

2 None of the other options are true

Exam generated for <EMAILADDRESS> 4

vi. (1 pt) Choose all statements which are guaranteed to be true, if f = O(log n)

2 f = Ω(1)

� f = O(log2 n)

� f = O(n0.01)

2 f = Θ(log n)

2 None of the other options are true

vii. (1 pt) Choose all statements which are guaranteed to be true if f = n(sin(n) + 2)

� f = Ω(1)

� f = Θ(n)

� f = O(n2)

2 None of the other options are true

viii. (1 pt) Suppose f(n) = n3 if n3 < 220 and n otherwise. State the theta bound of f(n) or write
‘undefined’ if it does not exist.

theta (n)

ix. (1 pt) Suppose f(n) and g(n) are both Θ(nd) and f(n) 6= g(n). If h(n) = f(n)− g(n) and h(n) > 0
for all n, what is h(n)? Your answer should be in omega, theta, or O.

O (nˆd)

x. (1 pt) What is the runtime for the following? Answer must be in Θ.

theta (3ˆn)

xi. (1 pt) What is the runtime for the following? Answer must be in Θ.

theta (nˆ2)

Exam generated for <EMAILADDRESS> 5

(b) i. (1 pt) We want to multiply the polynomials A(x) = 1 + 5x+ 3x2 + 7x3, and B(x) = 3 +x. How many
roots of unity should polynomial A be evaluated at to successfully compute the product of A and B?

8

ii. (1 pt) We want to multiply the polynomials A(x) = 1 + 5x+ 3x2 + 7x3, and B(x) = 3 +x. How many
roots of unity should polynomial B be evaluated at to successfully compute the product of A and B?

8

iii. (1 pt) Suppose ω is a primitive 2n-th root of unity. What are the n-th roots of unity in terms of ω?
Be sure to describe all nth roots.

1, wˆ2, wˆ4, . . . , wˆ{2(n - 1)}

iv. (1 pt) Consider Fake Fiveier Transform, which is similar to the Fast Fourier Transform, though each
polynomial is instead evaluated at arbitrary values (roots of disunity) naively. What is the runtime of
polynomial multiplication using this algorithm, if the polynomials we are multiplying are of degree n?

O(n2) if the numbers are random there is no way to divide and conquer.

v. (1 pt) Recall that a degree n polynomial can be written in its point-value form, by giving its values
at n distinct points.

Given two degree n polynomials in point-value form (with the same set of n dinstict points), what is
runtime of computing their product in point-value form? Give your answer in Θ notation.

theta (n)

vi. (1 pt) Given two arrays [a0, a1, . . . , an−1] and [b0, b1, . . . , bn−1], it is possible to compute
∑k
i=0 aibk−i

for all k = 0, 1, . . . , n in Θ(n log n) time.

 True

False

Exam generated for <EMAILADDRESS> 6

(c) i. (1 pt) Suppose on a directed graph G there exists at least one DFS tree (starting from a fixed vertex
s) with at least one forward edge. For all DFS trees on this graph starting from s, there must be at
least one forward edge.

True

 False

ii. (1 pt) For the following graph, write out the order of a DFS traversal in which the smallest post
number is not in a sink strongly connected component. For your ordering, only write a vertex when
it’s prenumber has been assigned.

K G J E A B C D F I H.

iii. (1 pt) Consider the following directed graph:

Suppose we add the directed edge (E, D). If we run DFS, (E, D) will be a cross edge.

Always

 Sometimes

Never

iv. (1 pt) Consider the following directed graph:

Suppose we add the directed edge (D, B). If we run DFS, (D, B) will be a back edge.

Always

Sometimes

 Never

Exam generated for <EMAILADDRESS> 7

v. (1 pt) Consider the following directed graph:

Suppose we add the directed edge (D, A). If we run DFS, (D, A) will be a tree edge.

Always

 Sometimes

Never

vi. (1 pt)

We are using DFS to find the strongly connected components in the graph. Calling explore on which
of the following vertices will correctly mark exactly one SCC as visited?

� A

2 B

2 C

2 D

� E

vii. (1 pt) Adding an edge to a DAG creates a cycle.

Always

 Sometimes

Never

viii. (1 pt) In a topological ordering of a DAG where every edge has length 1, vertex a comes before vertex
b. This means that the length of the longest path that ends at vertex b must be greater than or equal
to the longest path that ends at vertex a.

True

 False

ix. (1 pt) If G is a directed graph which has at least 2 SCCs, it is possible to decrease the number of
SCCs of G by adding additional vertices and/or edges.

 Always

Sometimes

Never

Exam generated for <EMAILADDRESS> 8

x. (1 pt) If G is a directed graph, it is possible to increase the number of SCCs of G by adding additional
vertices and/or edges.

 Always

Sometimes

Never

xi. (1 pt) If G is a directed graph, it is possible to decrease the number of SCCs of G by adding a single
edge of your choosing.

Always

 Sometimes

Never

xii. (1 pt) If G is a directed graph, it is possible to increase the number of SCCs of G by adding a single
edge of your choosing.

Always

Sometimes

 Never

Exam generated for <EMAILADDRESS> 9

(d) i. (1 pt) In a disjoint sets data structure with union by rank and path compression with n items, the
time for any single call to find(x) is at most O(log∗ n) in the worst case.

True

 False

ii. (1 pt) In a disjoint sets data structure with union by rank and path compression, it is possible for the
rank of a (non-root) node to be equal to that of one of its ancestors (parents, parents of parents, etc).

True

 False

iii. (1 pt) Consider a disjoint sets data structure with union-by-rank and no path compression, with
the elements {1, 2, 3, 4, 5}. Starting with all elements in their own set, we make the calls:

A. union(1, 2)
B. union(2, 3)

Afterwards, some arbitrary number of union and find operations are performed. Give the tightest
possible upper bound on the rank of element 3 after all operations have been performed.

0

iv. (1 pt) In a disjoint sets data structure with no union-by-rank or path compression, what is the
maximum height of a tree in the data structure if there are n elements? Note: a root node has height 0.

n - 1

Exam generated for <EMAILADDRESS> 10

(e) i. (1 pt) Choose all bounds which are guaranteed to be true, if T (n) = 2T (n5) +O(n).

2 T (n) = O(nlog5 2)

2 T (n) = Θ(nlog5 2)

� T (n) = O(n)

2 T (n) = Θ(n)

2 None of the other options

ii. (1 pt) Choose all bounds which are guaranteed to be true, if T (n) = 12T (n7) +O(n).

� T (n) = O(nlog7(12))

2 T (n) = Θ(nlog7(12))

2 T (n) = O(n)

2 T (n) = Θ(n)

2 None of the other options

iii. (1 pt) Choose all bounds which are guaranteed to be true, if T (n) = 25T (n5) + Θ(n2).

� T (n) = O(n2 log n)

� T (n) = Θ(n2 log n)

� T (n) = O(n3)

2 T (n) = Θ(n3)

2 None of the other options

iv. (1 pt) Give an O bound for the following recurrence: T (n) = 9T (n3) + n2(log3 n)

nn(log n)*(log n)

Exam generated for <EMAILADDRESS> 11

(f) i. (1 pt) If a directed graph has exactly one negative cycle, Dijkstra’s will always compute the correct
shortest paths.

True

 False

ii. (1 pt) If a directed graph has negative edges but no negative cycles, Dijkstra’s will compute the
correct shortest paths.

Always

 Sometimes

Never

iii. (1 pt) Running Dijkstra’s on a tree with negative edge weights will correctly compute shortest paths.

 Always

Sometimes

Never

iv. (1 pt) Running Dijkstra’s on a DAG with negative edge weights will correctly compute shortest paths.

Always

 Sometimes

Never

Exam generated for <EMAILADDRESS> 12

(g) i. (1 pt) Consider the following algorithm as an attempt to solve the maximum independent set problem.
Each iteration, the algorithm takes the lowest-degree vertex into the solution, removes its neighbors
from the graph, and repeats. Which one(s) of the following statements about the algorithm is true?

2 The algorithm does not necessarily produce a valid independent set.

� The algorithm may produce an independent set that is not the maximum one.

� The algorithm may produce the maximum independent set.

� The algorithm always produces a valid independent set.

ii. (1 pt) Consider the following algorithm as an attempt to solve the maximum clique problem. Each
iteration, the algorithm takes the highest-degree vertex into the solution, removes all vertices that are
not its neighbors from the graph, and repeats. Which one(s) of the following statements about the
algorithm is true?

2 The algorithm does not necessarily produce a valid clique.

� The algorithm may produce a clique that is not the maximum one.

� The algorithm may produce the maximum clique.

� The algorithm always produces a valid clique.

Exam generated for <EMAILADDRESS> 13

(h) i. (1 pt) Sid is in charge of organizing a Pokemon tournament with n players. The tournament is a
single-elimination tournament: if players i and j play, the player that loses is out of the tournament
and cannot play any more games. There are no ties.

Sid has obtained the following insider information: if players i and j play, then they will score a
combined total of f(i, j) ≥ 0 points in that game, and furthermore as the organizer, he can rig the
match so that the player of his choice wins. Sid wishes to find a tournament schedule which maximizes
the number of points scored throughout the tournament. For that, he needs to specify what the
matches are and which player he chooses to be the winner for each match.

Briefly describe an efficient algorithm to solve this problem.

Let G = (V,E) be the complete graph on n vertices with edge weights `(i, j) = f(i, j).
Find the maximum spanning tree. Done.

Exam generated for <EMAILADDRESS> 14

(i) i. (1 pt) Let G be an undirected weighted graph with positive edge weights, and let T be a MST of G.
If every weight w in G is replaced with w2, T will still be a MST of G.

Always

 Sometimes

Never

ii. (1 pt) Let G be an undirected weighted graph with positive edge weights, and let T be a MST of G.
If every weight w in G is replaced with 2w, T will still be a MST of G.

 Always

Sometimes

Never

iii. (1 pt) The unique heaviest edge across some cut is guaranteed not to be in a MST.

True

 False

iv. (1 pt) An edge that is the unique lightest edge among all edges incident to a vertex is guaranteed to
be in a MST of the graph.

 True

False

Exam generated for <EMAILADDRESS> 15

(j) i. (1 pt) Let Gk be the complete graph of k vertices. Edges are undirected and unweighted. What is
the value of a cut of Gk with n nodes on the left side of the cut and k − n nodes on the right side of
the cut?

n * (k - n)

ii. (1 pt) Let G4 be the complete graph of 4 vertices. Edges are undirected and unweighted. What is
the minimum number of edges one has to remove on G4 so that for all s, t, the value of maximum s-t
flow is reduced?

2 edges. If you only remove one edge, there will be a vertex with a min cut of 3
still.

iii. (1 pt) In a directed weighted graph, for fixed s, t, removing the edge with the smallest capacity would
always reduce the value of maximum s-t flow.

True

 False

iv. (1 pt) In a directed weighted graph, for fixed s, t, removing the edge with the largest capacity would
always reduce the value of maximum s-t flow.

True

 False

v. (1 pt) Deciding if a bipartite graph has a perfect matching can be reduced to computing maximum
flow in a directed graph.

 True

False

vi. (1 pt) Let C be the min s-t cut value of a directed graph, where each edge has unit capacity. Then
increasing each edge capacity by 1 would always increase the value of max s-t flow by exactly C.

 True

False

Exam generated for <EMAILADDRESS> 16

(k) Zero Sum Games

i. (1 pt) Consider a two-player zero-sum game. If the row player has announced and fixed a pure
strategy, there exists an optimal strategy for the column player which is pure (always choose the same
move).

 True

False

ii. (1 pt) Consider a two-player zero-sum game. If the column player plays a non-optimal strategy, the
row player’s expected payoff could be higher than the value of the game.

 True

False

iii. (1 pt) For each player in a two-player zero-sum game, the optimal strategy is always unique.

True

 False

iv. (1 pt) The value of a two-player zero-sum game is unique.

 True

False

v. (1 pt) Let V be the value of a two-player zero-sum game. If the row player plays according to their
optimal strategy, it is possible for the column player to play in a way that causes the row player’s
expected payoff to be less than V .

True

 False

vi. (1 pt) Specify the entries of the 2x2 payoff matrix of a two-player zero-sum game such that the
optimal strategy for the row player is not unique, but the optimal strategy for the column player is:

+----+----+
| a | b |
+----+----+
| c | d |
+----+----+

One possible solution: a = 1, b = 0, c = 1, d = 0. Any solution where each column
has all the same value.

Exam generated for <EMAILADDRESS> 17

vii. (1 pt) Consider the following payoff matrix for a zero-sum game (each entry represents the row player’s
payoff):

+----+----+
| 1 | -3 |
+----+----+
| -2 | 5 |
+----+----+

Which one of these optimization problems finds the optimal strategy (x1, x2) for the row player?

minx1,x2 max{x1 − 3x2,−2x1 + 5x2}

maxx1,x2
min{x1 − 3x2,−2x1 + 5x2}

minx1,x2
max{x1 − 2x2,−3x1 + 5x2}

 maxx1,x2 min{x1 − 2x2,−3x1 + 5x2}

viii. (1 pt) Consider the following LP:

max z such that $z ≤ 2x− yz ≤ −5x+ 3y x, y, z ≥ 0

Fill in the optimization problem so that its optimal value is equal to this LP’s optimal value:

(a) (b) { (c), (d) }

where you may specify either maxx,y or minx,y for (a), max or min for (b) and write an expression in
terms of x and y for (c) and (d).

max_{x,y} min {2x - y, -5x + 3y}

ix. (1 pt) In a two-player zero-sum game, suppose both players are restricted to playing pure strategies
(each must always choose the same move). And recall that if they are allowed to use mixed strategies,
the optimal strategies can be found via primal and dual LPs. Explain how to modify the LP to solve
for the optimal pure strategies. You may use non-linear or integral constraints.

Change xi ≥ 0 to xi ∈ {0, 1}

x. (1 pt) In a two-player zero-sum game, suppose both players are restricted to playing pure strategies
(each must always choose the same move). Strong duality (still) always holds in this situation, i.e., the
payoffs of the row and column player still coincide, when both play their optimal pure strategies.

True

 False

Exam generated for <EMAILADDRESS> 18

xi. (1 pt) Consider the following zero sum game. (Each entry represents the row player’s payoff. The row
player is trying to maximize the payoff.)

+---+----+
| 3 | -1 |
+---+----+
| 5 | 5 |
+---+----+

If the row player plays (3/4, 1/4) and the column player plays optimally, What is the expected payoff
of this game?

1/2

xii. (1 pt) Consider the following zero sum game. (Each entry represents the row player’s payoff. The row
player is trying to maximize the payoff.)

+---+----+
| 3 | -1 |
+---+----+
| 5 | 5 |
+---+----+

The expected payoff is positive if both players play optimally.

 True

False

xiii. (1 pt) Specify the values for x and y in the following payoff matrix of the row player in a zero-sum
game such that row player has a dominating strategy (a move that achieves equal or higher payoff
than any other one, regardless of the strategy of the other player), but column player does not.

+---+---+---+
| 2 | x | 3 |
+---+---+---+
| 3 | 1 | 4 |
+---+---+---+
| y | 2 | 1 |
+---+---+---+

According to your values of x, y, what is row’s dominating strategy (row number)?

Wasn’t possible. Free point for this problem.

Exam generated for <EMAILADDRESS> 19

(l) i. (1 pt) In the experts problem with n experts and losses on each day in [0, 1], what is the tightest
bound the multiplicative weights algorithm guarantees about your total loss over T days?

T

ii. (1 pt) In the experts problem, even if the losses can be infinite, the regret bound of the multiplicative
weights update algorithm still holds.

True

 False

iii. (1 pt) In the experts problem, if we knew all losses of all experts on all days in advance (before day
0), we may be able to incur less total loss (over T days) than the offline optimum. (Recall that the
offline optimum is defined as the total loss incurred by the best expert.)

 True

False

iv. (1 pt) In the experts problem, there always exists a strategy that chooses the same expert on every
day (and no other experts) that achieves the offline optimum total loss.

 True

False

v. (1 pt) We are running the multiplicative weights algorithm with 20 experts and every loss is in [0, 1].
Let’s say we run the algorithm for 80 days, we believe the best expert has a total cost 15 over the 80
days, and epsilon is 1

4 . What is the maximum that the total loss incurred by the algorithm can be?
Provide your answer in terms of a mathematical expression.

total regret = loss of algorithm - offline optimum ≤ εT + ln(n)
ε . \

loss of algorithm− 15 ≤ 1

4
(80) +

ln(20)
1
4

\
loss of algorithm ≤ 20 + 4 ln(20) + 15

\ The maximum loss is roughly 46.98.

vi. (1 pt) In the experts problem, multiplicative weights update (MWU) algorithm and offline optimum
can incur the same total loss over T days.

 True

False

Exam generated for <EMAILADDRESS> 20

(m) Hashing

i. (1 pt) Consider the hash family H = {h1, h2}, where h1(x) = 1 and h2(x) = x for x ∈ {1, . . . , n}.
That is, we are hashing n values to n buckets. Instead of choosing a hash function uniformly at random
from the hash family, we’ll choose h1 with 1

n probability and h2 with n−1
n probability. For any pair of

distinct elements x, y ∈ {1, . . . , n} is the probability that h(x) = h(y) bounded by 1/n?

 Yes

No

ii. (1 pt) Let H be a universal family of hash functions mapping a set A to a set B. Consider a, b ∈ A
and a 6= b. Give an upper bound on the number of functions h in H s.t. h(a) = h(b) is at most:

|A|
|B|

|H| · |A||B|

 |H|
|B| .

|B|·|A|
|H|

iii. (1 pt) Let n be a multiple of 3. Consider the hash family H = {h1, h2}, where h1(x) = x and
h2(x) = x mod n

3 for x ∈ [n]. Is this hash family universal?

Yes

 No

iv. (1 pt) If x and y are distinct elements from a universe U , and h : U → {0, 1}k is a hash function drawn
from a universal hash family H. Select all of the following that are upper bounds on the probability
that h(x) = h(y)?

� 1/k

� 1/2k−1

� 1/ log k

2 1/2k+1

v. (1 pt) Let H be a universal hash family of hash functions mapping U to [m]. Let S be any subset
of U such that |S| = n. For any k in S, select all of the following which are upper bounds on the
expected number of collisions k has with elements in S for h sampled uniformly from H.

� n−1
m

� n
m

2 n−2
m

� n+1
m

vi. (1 pt) Let S be the set of p roots of unity where p is a fixed prime. Consider the hash family
H = {ha1,a2 : S2 → S, a1, a2 ∈ {0, 1, . . . , p− 1}}, where ha1,a2(e2πi

x1
p , e2πi

x2
p) = (e2πi

x1
p)a1 · (e2πi

x2
p)a2 .

Is this hash family universal?

 Yes

No

Exam generated for <EMAILADDRESS> 21

(n) Lower Bounds

i. (1 pt) Choose which of the following are necessarily true if P = NP?

� There exists a polynomial-time reduction from 3SAT to feasibility of linear programs.

2 There do not exist any problems that are not in NP.

2 There exists an n2 time algorithm for the Traveling Salesman Problem (TSP).

2 None of the other options.

ii. (1 pt) Let A be a decision problem. Suppose that given any instance I of the problem A, we can, in
polynomial time, construct a 3SAT formula that is satisfiable if and only if the solution to I is YES.
Which one of the following must be true?

A is NP-hard.

A is NP-complete.

 A reduces to 3SAT.

3SAT reduces to A.

iii. (1 pt) Let n be an even number. In the fantasy of Sosiland, people believe that it is NP -Hard to find
a cut of size at least 0.91 of the maximum cut. Under this belief, show that it is also NP -Hard to find
a balanced cut of size at least 0.91 of the Balanced Max Cut.

Recall that in the Max Cut problem, for a given graph G = (V,E), you are asked to find a set S ⊆ [n]
that maximizes the number of edges between S and V \ S. In the Balanced Max Cut problem, you are
asked to find S of size n

2 that maximizes the number of edges between S and V \ S.

Take the input for Max Cut, and duplicate it.

iv. (1 pt) Given a positive integer x, we wish to give an algorithm that returns 2x which runs in polynomial
time in the size of our input. Is this possible?

Yes

 No

v. (1 pt) Suppose we have an algorithm for solving a decision problem Q by applying a polynomial-time
reduction to a decision problem Q′ and then running a procedure A that solves Q′ in time Θ(nen).
Assume that the reduction preserves the solution and algorithm A is correct. Which one of the
following is definitely true about Q?

The problem is NP-hard.

The problem is NP-complete.

The problem is in NP.

The problem is in P.

 None of the other options.

Exam generated for <EMAILADDRESS> 22

(o) Complexity

i. (1 pt) Recall that a path where no vertex is visited more than once is called a simple path. Also,
recall that the Hamiltonian path problem asks if an undirected graph contains a path that visits every
vertex exactly once, and that this problem is NP-complete. Which one of the following statements is
false?

2 Computing the longest (simple) path in an unweighted undirected graph is NP-hard.

2 The Hamiltonian cycle problem, which asks if an undirected graph contains a cycle that visits
every vertex exactly once, is NP-hard.

2 Computing the longest (simple) path in an unweighted DAG is solvable in polynomial time.

� Computing a path that visits every edge exactly once (allowing revisiting vertices) in an undirected
graph is NP-hard.

ii. (1 pt) If P 6= NP , select all of the following problems that are solvable in polynomial time?

2 170-SAT

2 Compute the longest path in an unweighted undirected graph

� Compute the longest common subsequence of 3 binary strings

2 Decide if an (undirected) graph is 170-colorable

iii. (1 pt) Given a 0-1 matrix A of size n by n, we call an index set S ⊆ [n] dense (with respect to A)
if for all i ∈ S, j ∈ S, we have Aij = 1. Given a matrix A and positive integer t, the Dense Subset
problem asks if there exists a dense index set (with respect to A) of size at least t. Assuming P 6= NP ,
which one of the following statements is true?

2 The Dense Subset problem can be solved in O(n) time.

2 The Dense Subset problem can be solved in time polynomial in n, but not in O(n) time.

� The Dense Subset problem is NP-Complete.

2 The Dense Subset problem is not in NP .

iv. (1 pt) All problems in NP can be solved in polynomial space.

 True

False

v. (1 pt) Recall that a path where no vertex is visited more than once is called a simple path. Consider
the following problem: ‘’Given a weighted graph G, and vertices s and t, find a simple path from s to
t of length greater than k.” This problem is NP-complete.

 True

False

vi. (1 pt) Given a graph G, and a vertex s and t. Find a path from s to t of length greater than k (vertex
and edge repetitions are allowed). This problem is NP-complete.

True

 False

Exam generated for <EMAILADDRESS> 23

vii. (1 pt) A problem X is NP-complete if there is a polynomial time reduction from every problem in
NP to X.

True

 False

viii. (1 pt) For a given problem X, if there is a polynomial time reduction from X to every problem in
NP, then X is NP-hard.

True

 False

ix. (1 pt) We know Problem X is NP-hard, and wish to prove Problem Y is also NP-hard. Giving a
polynomial time reduction from Problem __ to Problem __ proves that Y is indeed NP-hard. (Fill
in X or Y in each blank.)

Problem X to Problem X

 Problem X to Problem Y

Problem Y to Problem X

Problem Y to Problem Y

x. (1 pt) X is NP-complete if there is a polynomial time reduction from 3SAT to X.

True

 False

xi. (1 pt) There is a polynomial time reduction from the problem of finding a shortest path in a graph to
Maximum Set Cover.

 True

False

xii. (1 pt) Let A and B be two problems in a complexity class C. If there exists a polynomial time
reduction from A to B, then there exists a polynomial time reduction from B to A.

True

 False

Exam generated for <EMAILADDRESS> 24

(p) Approximation

i. (1 pt) Recall that in the Trident Bubble Gum problem, we are given an undirected graph G, and wish
to output the minimum-sized set of vertices S such that every vertex in G is either in S or adjacent to
a vertex in the set. In this problem, we call a vertex ‘’covered” by S if it is in S or has a neighbor in S.
Now consider the following algorithm that takes in a graph and finds a set S:

A. Initialize S := {}.
B. Add the vertex of highest degree in G to the set.
C. While there is a vertex not covered by S, add the vertex with the most uncovered neighbors to S.

What is the smallest approximation ratio that this algorithm can guarantee?

2 2

� lnn

2 √
n

2 Unbounded

ii. (1 pt) Consider the following LP relaxation for the minimum vertex cover problem, which, given an
unweighted undirected graph G = (V,E), asks for the minimum set of vertices that includes at least
one endpoint of every edge of G.

We would like to approximate the vertex cover problem. We first solve the LP and obtain a set of
fractional values {xu}u∈V , one for each vertex. Then we take u into our solution if and only if xu ≥ 1/2.
Which one of the following statements is true about the algorithm?

2 The algorithm does not necessarily produce a valid vertex cover.

� The algorithm always produces a valid vertex cover, and the smallest approximation factor it
guarantees is 2.

2 The algorithm always produces a valid vertex cover, and the smallest approximation factor it
guarantees is lnn.

2 The algorithm always produces a valid vertex cover, but the approximation factor can be unbounded.

Exam generated for <EMAILADDRESS> 25

iii. (1 pt) Consider the following LP relaxation for the max cut problem, which, given a connected,
unweighted, and undirected graph G = (V,E) on n ≥ 2 vertices, asks for set of vertices S ⊆ V that
maximizes the number of edges between S and V \ S.

We would like to approximate the max cut problem. Let’s say we solve the LP and obtain a set of
possibly fractional values {xu}u∈V . Consider the following two algorithms to obtain a set of vertices S:

A. Algorithm 1. Let S be the set of all vertices u such that xu ≥ 1/2.
B. Algorithm 2. Choose S randomly by placing each u in S independently with probability xu.

Which one of the following statements are true about the algorithms? For any S, we define its cut
value to be E(S,S̄)

|E| , where S̄ = V \ S.

2 Algorithm 1 always produces the maximum cut.

2 There exists a sequence of graphs where the true max cut value is exactly 1
2 while the objective

value of the LP is 1.

� There exists a graph and an optimal LP solution {x∗u}u∈V where the true max cut value is equal
to the cut value given by Algorithm 1.

� On the complete graph on 3 vertices, the expected cut value produced by Algorithm 2 is strictly
greater than the cut value produced by Algorithm 1.

iv. (1 pt) We would like a 1
2 -approximation for the maximum independent set problem. Recall that S is

a vertex cover iff V \ S is an independent set and that we have an efficient 2-approximation greedy
algorithm for the minimum vertex cover problem. Suppose we are given graph G as input. Now
consider the following algorithm:

A. We run our 2-approximate greedy algorithm for Minimum Vertex Cover on G and obtain S.
B. We output V \ S.

Is the above algorithm a valid 1
2 -approximation for the maximum independent set problem?

Yes.

 No.

v. (1 pt) Given a graph G on n vertices where we are promised that the minimum vertex cover has
size at most n/3, we wish to output a 1

3 -approximation of the maximum independent set. Recall
that S is a vertex cover iff V \ S is an independent set and that we have an efficient 2-approximation
greedy algorithm for the minimum vertex cover problem. Suppose we are given graph G as input. Now
consider the following algorithm:

A. We run our 2-approximate greedy algorithm for Minimum Vertex Cover on G and obtain S.
B. We output V \ S.

Is the above algorithm a valid 1
3 -approximation for the maximum independent set problem?

 Yes.

No.

Exam generated for <EMAILADDRESS> 26

vi. (1 pt) Consider the following algorithm for a knapsack problem of n items with values: p1, . . . , pn,
weights: w1, . . . , wn, and a budget for total weight of W . Assume that for all i in [n], wi ≤W .

A. Define ratio ri = pi
wi
,∀i ∈ [n].

B. Greedily pick items with the highest ratio until picking the next item exceeds budget W . Call this
next item k.

C. Compute total price of the items selected by the greedy algorithm, pG.
D. Return arg max{pG, pk}.

What’s the highest approximation ratio guaranteed by the output? (Note that this is a maximization
problem so the approximation ratio is at most 1.)

1
2 , as OPT ≤ pG + pk.

vii. (1 pt) Given any NP-Complete problem, we have an α-approximation algorithm in polynomial time
for some constant α > 0.

True

 False

Exam generated for <EMAILADDRESS> 27

(q) Randomized Algorithms

i. (1 pt) Given G, a bipartite graph promised to contain a perfect matching, suppose algorithm A finds a
perfect matching with probability 1

2 . Consider algorithm B, which runs A independently T times, and
returns the output of an arbitrary run if one of the T runs produces an output, and returns ‘’failure”
otherwise.

How large should T be to guarantee that the probability that algorithm B outputs ‘’failure” is less
than δ = 0.05?

T ≥ log 1
0.05 = log2 20, so T ≥ 5.

ii. (1 pt) Suppose you have a Las Vegas algorithm A that solves a computational problem on instances
of size n with expected running time T (n).

Describe how to get a Monte Carlo algorithm B for the same problem which runs in time at most
2T (n), such that on every input B outputs a correct output with probability at least 1/2, and otherwise
outputs ‘’failure” (it never returns a wrong answer).

We simply run algorithm {A}. If it returns an answer before time 2T (n), we
return the answer, which is correct by assumption. Otherwise we cut stop the
algorithm at time 2T (n), and declare “failure”. By Markov’s inequality, wp ≥ 1/2
{A} will terminate with the correct answer in time at most 2T (n).

iii. (1 pt) Suppose you have a Monte Carlo algorithm B that returns a correct answer with probability
at least 1/2 on every input or otherwise it returns ‘’failure”, and suppose that its running time on an
input of size n is at most T (n).

Construct a Las Vegas algorithm C from it that runs in expected time at most 2T (n).

We just run algorithm {B} again and again, with independent random choices
in each run, until it returns an answer (not “FAIL”). In this case, we always get
the right answer at the end. Since each run will success with probability 1

2 , and
the runs are independent, on expectation we need to run {B} twice to get the
answer, thus the expected running time is 2T (n).

iv. (1 pt) Consider a probabilistic test for whether AB = C. Given three n×n matrices A,B,C, we want
to verify if AB = C. The algorithm chooses random vectors x, y uniformly at random from {0, 1}n,
and computes yTABx, yTCx. If they are not the same, the algorithm declares AB 6= C, otherwise it
declares AB = C. Which of the following are valid upper bounds of the error probability of this test.

2 0

� 1

� 3/4

2 1/2

v. (1 pt) Let X be an integer valued random variable. Then E[X] =
∑
i≥1 Pr[X ≥ i].

True

 False

Exam generated for <EMAILADDRESS> 28

vi. (1 pt) Let X be a positive integer valued random variable. Then E[X] =
∑
i≥1 Pr[X ≥ i].

 True

False

Exam generated for <EMAILADDRESS> 29

(r) Streaming

i. (1 pt) Consider a stream of m elements, all of which are in [n], and further assume that each element
in [n] occurs at least once in the stream. Consider the following algorithm to sample an element from
the stream: using a random hash function as in the FM algorithm h : [n]→ [0, 1], store the element
with minimum hash value in the stream. Take this element as your sample.

Give a big-O bound on the space required to run this algorithm (ignoring the space needed to read
each element in the stream and the space needed to store the hash function h)?

ii. (1 pt) Consider a stream of m elements, all of which are in [n], and further assume that each element
in [n] occurs at least once in the stream. Consider the following algorithm to sample an element from
the stream: using a random hash function as in the FM algorithm h : [n]→ [0, 1], store the element
with minimum hash value in the stream. Take this element as your sample. Let i ∈ [n].

What is the probability that an element with value i is selected?

1/n

iii. (1 pt) Consider a stream of elements in [n], where each element shows up at most once. At the end of
the stream, we are given a query q ∈ [n] and asked if q appeared in the stream. To solve this problem,
we create a bit array A of length m, initialized to be all 0, and sample k independent random hash
functions h1, . . . , hk where each hi : [n]→ [m].

A. During the stream, when an element e ∈ [n] appears, we set the hi(e)th bit of the array A to 1, for
all i.

B. To answer the query, we simply check the hi(q)th bit of the array for each i, and claim that q
appeared in the stream if and only if all these bits are 1.

Note that except at the initialization step the algorithm never sets a bit to 0. If q appeared in the
stream, the algorithm will always correctly claim that it did.

 True

False

Varun Jhunjhunwalla
O(log n)

Exam generated for <EMAILADDRESS> 30

iv. (1 pt) Consider a stream of elements in [n], where each element shows up at most once. At the end of
the stream, we are given a query q ∈ [n] and asked if q appeared in the stream. To solve this problem,
we create a bit array A of length m, initialized to be all 0, and sample k independent random hash
functions h1, . . . , hk where each hi : [n]→ [m].

A. During the stream, when an element e ∈ [n] appears, we set the hi(e)th bit of the array A to 1, for
all i.

B. To answer the query, we simply check the hi(q)th bit of the array for each i, and claim that q
appeared in the stream if and only if all these bits are 1.

Note that except at the initialization step the algorithm never sets a bit to 0. For fixed i in [k], element
e in [n] and ` in [m], what is the probability that the hi(e) 6= `?

 1− 1/m

(1− 1/m)k

1− (1− 1/m)k
2

(
1− (1− 1/m)k log k

)k
v. (1 pt) Consider a stream of elements in [n], where each element shows up at most once. At the end of

the stream, we are given a query q ∈ [n] and asked if q appeared in the stream. To solve this problem,
we create a bit array A of length m, initialized to be all 0, and sample k independent random hash
functions h1, . . . , hk where each hi : [n]→ [m].

A. During the stream, when an element e ∈ [n] appears, we set the hi(e)th bit of the array A to 1, for
all i.

B. To answer the query, we simply check the hi(q)th bit of the array for each i, and claim that q
appeared in the stream if and only if all these bits are 1.

Note that except at the initialization step the algorithm never sets a bit to 0. For element e in [n] and
` in [m], what is the probability that for all i ∈ [k], hi(e) 6= `?

1− 1/m

 (1− 1/m)k

1− (1− 1/m)k
2

(
1− (1− 1/m)k log k

)k

Exam generated for <EMAILADDRESS> 31

vi. (1 pt) Consider a stream of elements in [n], where each element shows up at most once. At the end of
the stream, we are given a query q ∈ [n] and asked if q appeared in the stream. To solve this problem,
we create a bit array A of length m, initialized to be all 0, and sample k independent random hash
functions h1, . . . , hk where each hi : [n]→ [m].

A. During the stream, when an element e ∈ [n] appears, we set the hi(e)th bit of the array A to 1, for
all i.

B. To answer the query, we simply check the hi(q)th bit of the array for each i, and claim that q
appeared in the stream if and only if all these bits are 1.

Note that except at the initialization step the algorithm never sets a bit to 0. Let ` be a fixed number
in [m]. If C distinct elements in [n] have appeared in the stream what is the probability that the `th
bit is 1?

1− 1/m

(1− 1/m)k

 1− (1− 1/m)Ck

(
1− (1− 1/m)Ck

)k
vii. (1 pt) Consider a stream of elements in [n], where each element shows up at most once. At the end of

the stream, we are given a query q ∈ [n] and asked if q appeared in the stream. To solve this problem,
we create a bit array A of length m, initialized to be all 0, and sample k independent random hash
functions h1, . . . , hk where each hi : [n]→ [m].

A. During the stream, when an element e ∈ [n] appears, we set the hi(e)th bit of the array A to 1, for
all i.

B. To answer the query, we simply check the hi(q)th bit of the array for each i, and claim that q
appeared in the stream if and only if all these bits are 1.

Note that except at the initialization step the algorithm never sets a bit to 0. Let C be the number of
distinct elements that appeared in the stream and let q ∈ [n] be an element that did not appear in the
stream. Upon being queried q, what is the probability that the algorithm erroneously claims that q
appeared in the stream even though it did not?

1− 1/m

(1− 1/m)k

1− (1− 1/m)Ck

 (
1− (1− 1/m)Ck

)k
viii. (1 pt) Imagine we implement the FM algorithm for distinct elements from class, but accidentally

store the maximum hash value instead of the minimum. How can we make a simple modification to
estimate the number of distinct elements from the maximum value?

Max val can be interpreted as a min value by taking 1-max. Then apply usual
logic/math.

Exam generated for <EMAILADDRESS> 32

ix. (1 pt) Rishi receives a length-n stream of 0’s, 1’s, and 2’s. Let L be the product of all elements of the
stream. He wishes to output the exact value of log2 L, where we set it to −1 if L = 0.

Describe a simple algorithm to do so in O(log n) space.

Just count the number of 2’s. If we encounter a zero, set counter to negative one
and don’t change. If we encounter a one, ignore. If we encounter 2, increment.
Note that it does not suffice to keep track of the entire product as that would
require O(n) memory.

x. (1 pt) We wish to estimate the number of distinct elements in a stream and modify the FM algorithm
from class in the following way: we keep track of the average hash value of all elements that appeared
in the stream instead of the minimum. Let t be the value stored by the algorithm.

Does there exist a choice of constants a and b such that E[at+ b] is equal to the number of distinct
elements in the stream?

Yes.

 No.

xi. (1 pt) Recall Morris’s algorithm to estimate n, the length of a stream, in O(log log n) space from
lecture: 1. Initialize X = 0. 2. For each element in the stream, increment X with probability 1

2X .
3. For a query output ñ = 2X − 1. Suppose your only source of randomness is a ‘’fair coin”, i.e., a
random bit that is 1 with probability 1

2 and 0 with probability 1
2 . State how to implement the second

step of the above algorithm in O(logX) space.

Let ` be a counter initially set to X. While ` > 0, sample a uniform bit b and if
b = 0, set ` = −1, otherwise decrement ` by 1. If ` = 0, increment X, and if ` = −1,
do not increment X.

Exam generated for <EMAILADDRESS> 33

(s) i. (1 pt) Consider the recurrence

M [a, b] = max(a ·M [a− 1, b− 1], b ·M [a− 2, b− 2])

where 0 ≤ a ≤ n, 0 ≤ b ≤ n. Let M [0, i] = M [i, 0] = 1 for all 0 ≤ i ≤ n, and let M [i, j] = 0 if either i
or j are negative. Give the tightest possible asymptotic bound on the runtime to compute M [n, n]
using the recurrence.

ii. (1 pt) Let g be some integer valued function with a lookup table given to you, so it takes constant
time to compute. Consider the recurrence

M [a, b, c] = max(M [a− 1, b, c− 1] + g(a− 1, b, c− 1),M [a− 2, b, c− 1] + g(a− 2, b, c− 1))

where 0 ≤ a, b, c,≤ n. Let M [i, 0, 0] = M [0, i, 0] = [0, 0, i] = 1 for all 0 ≤ i ≤ n, and M [i, j, k] = 0 if
any of i, j, k are negative. Give the tightest possible asymptotic bound on the runtime to compute
M [n, n, n] using the recurrence.

Θ(n log2(n))

iii. (1 pt) Let g be some integer valued function with a lookup table given to you, so it takes constant time
to compute. Consider the recurrence M [a, b] = min0≤i<bM [a− 1, i] + g(a, i), defined for 1 ≤ a, b ≤ n.
As base cases, M [i, j] = 0 for any i, j not in the range 1 to n. You would like to compute M [a, b] for
all a, b.

Select all valid orders which minimize the required concrete space requirement (if multiple orders
achieve the smallest possible space, select all of those orders). Concrete here means that leading
constants matter, e.g. 2n2 space is considered less than 3n2 space.

2 For a = 1 to n, for b = 1 to n, compute M [a, b] using recurrence relation

� For a = 1 to n, for b = n to 1, compute M [a, b] using recurrence relation

2 For a = n to 1, for b = 1 to n, compute M [a, b] using recurrence relation

2 For a = n to 1, for b = n to 1, compute M [a, b] using recurrence relation

2 None of the other answers

Varun Jhunjhunwalla
Θ(n) as we only care about diagonal entries�

Exam generated for <EMAILADDRESS> 34

iv. (1 pt) Consider the following pseudocode. Which one of the following recurrence relations could be
computed in this order? Ignore the base cases for each relation.

M(i, j) = mink∈[n]{M(i− k, j) +M(i, j − k) + f(i, j, k)}

M(i, j) = mini≤k≤j{M(i− k, j) +M(i, j − k) + f(i, j, k)}

M(i, j) = mini≤k≤j{M(i, k) +M(j, k + 1) + f(i, j, k)}

M(i, j) = mink∈[n]{M(i, k) +M(j, k + 1) + f(i, j, k)}

 M(i, j) = mini≤k≤j{M(i, k) +M(k + 1, j) + f(i, j, k)}

v. (1 pt) Neha is trying transform her current document x into a desired document y. It takes her I
seconds to insert a character, R seconds to remove a character, and S seconds to substitute a character.

Define a recurrence relation T (i, j) as the time it takes to transform the first i characters of x into the
first j characters of y. The recurrence is of this form:

T (i, j) = min{. . .}

Select all expressions that should appear in the min.

2 T (i, j − 1)

2 T (i, j − 1) +R

2 T (i, j − 1) + S

� T (i, j − 1) + I

2 T (i− 1, j)

� T (i− 1, j) +R

2 T (i− 1, j) + S

2 T (i− 1, j) + I

2 T (i− 1, j − 1) if(x[i] 6= y[j])

2 T (i− 1, j − 1) +R if(x[i] 6= y[j])

� T (i− 1, j − 1) + S if(x[i] 6= y[j])

2 T (i− 1, j − 1) + I if(x[i] 6= y[j])

� T (i− 1, j − 1) if(x[i] = y[j])

2 T (i− 1, j − 1) +R if(x[i] = y[j])

2 T (i− 1, j − 1) + S if(x[i] = y[j])

2 T (i− 1, j − 1) + I if(x[i] = y[j])

Exam generated for <EMAILADDRESS> 35

vi. (1 pt) Let M [a, b, i, j] be a matrix of subproblems, with 0 ≤ a ≤ 3, 0 ≤ b ≤ n, 0 ≤ i ≤ log n, 0 ≤ j ≤ 5.
Let f(i, j, k) be an arbitrary integer-valued function that is fixed ahead of time, so computing it for
any particular input takes constant time. Consider the following recurrence:

M [a, b, i, j] = max
0≤x<i,0≤y<j

M [a− 1, b− 1, x, y]2 + f(i− x, y − j, a+ b)

Assume all base cases M [0, 0, i, j] have been computed. Give the tightest possible asymptotic bound
on the runtime to compute all entries in M .

Varun Jhunjhunwalla
Θ(n log^2(n))�

Exam generated for <EMAILADDRESS> 36

(t) Linear Programming

i. (1 pt) It’s possible for an optimal solution to a linear program to be on an edge of the feasible region,
as opposed to just a vertex.

 True

False

ii. (1 pt) Consider a linear program whose feasible region is a cube in d-dimensional space. What is the
smallest number of variables that could be in such a program?

d

iii. (1 pt) Consider a linear program whose feasible region is a cube in d-dimensional space. What is the
smallest number of constraints that could be in such a program (do not include the non-negativity
constraints)?

d

iv. (1 pt) Consider a linear program whose feasible region is a cube in d-dimensional space. What is the
maximum number of iterations that the Simplex method would need to find the optimal solution?

d

v. (1 pt) Consider the following LP:

where α, β, and C are non-negative real numbers. For what values of α, β, and C does the LP have
an optimum that is not unique?

vi. (1 pt) x∗ and y∗ are both optimal points of some LP. Let z = x∗+y∗

2 .

� z is always in the feasible region

2 z is sometimes in the feasible region

2 z is never in the feasible region

� z is always an optimal solution as well

2 z is sometimes be an optimal solution as well

2 z is never an optimal solution as well

Varun Jhunjhunwalla
alpha = beta and c/alpha< 30

Exam generated for <EMAILADDRESS> 37

(u) Duality

i. (1 pt) Let A be an m×n matrix of real numbers. Consider x = mini maxj Ai,j and y = maxj miniAi,j .
Select the tightest comparison that holds in general (e.g. x < y, x ≥ y, or no relation holds in general).

x < y

x > y

x ≤ y

 x ≥ y

x = y

no relation between x and y holds in general

ii. (1 pt) Consider the linear program max cTx subject to Ax ≤ b. Assume the LP is feasible and that
its objective value is bounded, and let x∗ and y∗ be optimal solutions to the primal and dual problems,
respectively. It is required that cTx∗ = bT y∗.

True

 False

iii. (1 pt) Fill in the blank to complete the proof for weak duality and briefly justify.

Proof: cTx ≤ _______ ≤ yT b

iv. (1 pt) For LPs, if the primal problem is a minimization problem, weak duality states that any feasible
solution to the dual problem upper bounds the optimal value of the primal problem.

True

 False

Varun Jhunjhunwalla
y^(T) A x. Multiply the first dual constraint by x and combine with the first primal constraint

Exam generated for <EMAILADDRESS> 38

No more questions.

