
U.C. Berkeley — CS170 : Algorithms Midterm 2
Lecturers: Alessandro Chiesa and Jelani Nelson March 17, 2020

Midterm 2

Name:

SID:

Rules and Guidelines

• This checkpoint is out of 101 points and you will have a week to complete it.

• Answer all questions. Read them carefully first. Not all parts of a problem are weighted equally.

• Be precise and concise.

• The problems may not necessarily follow the order of increasing difficulty.

• Any algorithm covered in the lecture can be used as a blackbox unless stated otherwise.

• Please either latex your answers, or provide a neatly handwritten version of the solutions
where every subpart is on a new page of your submission and the number is clearly labelled.

• Good luck!
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Discussion Section

Which of these do you consider to be your primary discussion section(s)? Feel free to choose multi-
ple, or to select the last option if you do not attend a section.

(a) Fred Zhang Wheeler 202 • Tu 5-6pm

(b) Jialin Li Etcheverry 3105 • Tu 5-6pm

(c) Tiffany Chien Etcheverry 3109 • W 9-10am

(d) Sidhanth Mohanty Wheeler 130 • W 9-10am

(e) Teddy Tran Moffitt Library 106 • W 10-11am

(f) Emaan Hariri Hearst Field Annex B5 • W 12-1pm

(g) Dee Guo Wheeler 224 • W 12-1pm

(h) Arpita Singhal Dwinelle 234 • W 1-2pm

(i) Gillian Chu Barrows 136 • W 1-2pm

(j) Rachel De Jaen Barrows 155 • W 1-2pm

(k) Joshua Turcotti Wheeler 20 • W 2-3pm

(l) Varun Jhunjhunwalla Wheeler 202 • W 2-3pm

(m) Vishnu Iyer Etcheverry 3113 (Advanced Section) • W 2-3pm

(n) Avni Singhal Wheeler 30 • W 3-4pm

(o) Jiazheng Zhao Dwinelle 229 • W 3-4pm

(p) Rishi Veerapaneni Wheeler 224 • W 3-4pm

(q) Jeff Xu Evans 9 • W 3-4pm

(r) Noah Kingdon Wheeler 202 • W 5-6pm

(s) Neha Kunjal Hildebrand B51 • Th 11-12pm

(t) Christina Jin Evans 9 • Th 12-1pm

(u) Noah Krakoff Moffitt Library 103 • Th 1-2pm

(v) Ajay Raj Wheeler 202 • Th 2-3pm

(w) Don’t attend section.
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1 True or False? (14 points)

For each part, give a brief proof if you think it’s true, or provide a counter example if you believe it
is false.

(a) (2 points) For any undirected graph with all positive edge weights, there exists a vertex v such
that the tree of shortest paths rooted at v is an MST of the graph. hTrue hFalse

(b) (2 points) Consider a linear program with a minimization objective. If there are infinitely many
integral feasible solutions, where all variables take integral values, then the objective value can
be made arbitrarily small. hTrue hFalse

(c) (2 points) Let A be a m × n matrix, b be a m-dimensional vector, and c be a n-dimensional
vector. If the linear program

min
x

c>x such that Ax ≥ b, x ≥ 0

has a feasible solution with objective value M, then every feasible point of its dual has an
objective value at most M. hTrue hFalse

(d) (2 points) If a graph has a unique lightest edge, then that edge must be part of every MST of the
graph. hTrue hFalse

(e) (2 points) Let F1 and F2 be feasible s-t flows in a directed graph G, satisfying the flow conser-
vation and capacity constraints. Then the flow F defined as F(e) := 0.6F1(e) + 0.4F2(e) for all
e ∈ E is also a feasible s-t flow in G. hTrue hFalse

(f) (2 points) We say an edge is saturated by a flow if the amount of flow on the edge equals its
edge capacity. In a directed graph, let e be an edge saturated by some maximum s-t flow of
value F. Let c be its capacity. If we reverse e, then in the new graph any maximum s-t flow
must have value at most F− c.

hTrue hFalse

(g) (2 points) Consider maximum s-t flow in a directed graph. Let T be the number of incoming
edges of t. If we add a constant C > 0 to all edge capacities, then the value of maximum s-t
flow will increase by C · T. hTrue hFalse
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2 Quick Union-Find (6 points)

Consider a disjoint set data structure S instantiated on the universe {1, . . . , n}. Some arbitrary num-
ber of Union and Find operations has been performed on S .

(a) (2 points) Assume S only uses union-by-rank, without path compression. Give the tightest
possible upper bound on the average time complexity of running 1000 additional Find opera-
tions. Give your answer in big-O notation as a function of n.

(b) (2 points) Assume S uses union-by-rank with path compression. Give the tightest possible
upper bound on the average time complexity of running 1000 additional Find operations. Give
your answer in big-O notation as a function of n.

(c) (2 points) Assume S uses union-by-rank with path compression. Then the time complexity of
each individual Find is at most O(log∗ n). Mark if this is true or false, and justify.hTrue hFalse
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3 Space/Time complexity (9 points)

Define a function S(i, j) recursively by:

S(i, j) = max
{

S(i− 2, j− 1) + 4, S(i− 1, j− 1) + 7, S(i− 1, j)
}

when i ∈ [0, m], j ∈ [0, n] and m < n.

Notice how this function is not fully specified due to a lack of base cases.

(a) (3 points) Describe a minimal set of base cases that would make this a well-defined recurrence.
We call (i, j) a base case if it is not in [0, m]× [0, n]. Set the value of S for each base case to be 0.
Make sure to only include the base cases that are necessary.

(b) (2 points) For all possible algorithms, give the tightest asymptotic bound on the space com-

plexity of computing S(m, n) using dynamic programming/memoization.
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(c) (4 points) Which of the following recurrence relations would take O(n2) time to compute if
memoized and all subproblems in the specified range have to be computed? You may assume
that each of the functions below are equal to 0 if any of their inputs are negative.
Note: there may be multiple answers.

i) S(1) = 5, S(x) = min1≤k≤x−1 S(k) + S(k)2 for x ∈ [2, n].

ii) S(i, j) = max
{

S(i− 3, j) + 9, S(i, j− 1) + 3
}

where i ∈ [0, n], j ∈ [0, n]

iii) S(i, j, k) = max
{

S(i− 3, j, k− 1) + 2, S(i, j− 1, k− 1) + 3
}

where i ∈ [0, n], j ∈ [0, n], k ∈
[0, n/2]

iv) S(i, j, k) = max
{

S(i− 3, j, k) + 9, S(i, j− 1, k− 1) + 3
}

where i ∈ [0, n], j ∈ [0, n], k ∈ [0, 3]
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4 To choose or not to choose (12 points)

We are given the following graph G:

A

B

C

D

E

F

3

2

1

3

g

k 4

7

8

a) (2 points) For what range of values of g are you guaranteed to include edge BE in the MST?

b) (2 points) For what range of values of k are you guaranteed to include edge CD in the MST?

c) (2 points) For what range of values of k are you guaranteed to NOT include edge CD in the
MST?

d) (3 points) Suppose an adversary can set g and k arbitrarily. What is the maximum cost of a
MST that the adversary can force?

e) (3 points) Draw seven edges on the following graph with six vertices, and then mark six edges
with 1 and one edge with x such that an adversary can choose x such that the cost of the MST
is arbitrarily large.

A

B

C

D

E

F
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5 Find the unknown coefficient (9 points)

(a) (4 points) Consider the following linear program in which the value of k is unknown. Find the
range of values of k such that the point (x1, x2) = (3, 5) is optimal.

max 2x1 + x2

x1 + x2 ≥ 2
x1 ≤ 3

kx1 + x2 ≤ 3k + 5
x1, x2 ≥ 0

(b) (3 points) Construct the dual of the linear program in part a. Leave k in your answer.

(c) (2 points) Convert the linear program in part a to be of the form where your objective function
is a minimization function, and your constraints are all in the form variable ≥ equation (e.g.
x1 ≥ 5). Leave k in your answer.
Note that this question is not asking you to find the dual
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6 Trees of Candles (14 points)

You are an interior decorator, confronted with a dark living room. To lighten the room up, you have
n candles and want to build k trees of candles. First, the candles {1, . . . , k} are already put on the
floor, to serve as roots of the k trees. You would like to put the remaining n− k candles {k + 1, . . . , n}
on top of them to form k trees {T1, · · · , Tk} of candles, where each Ti is rooted at candle i.

You can put an arbitrary number of candles on top of the same candle. The cost to putting candle i
on top of candle j is C(i, j). We assume that C(i, j) ≥ 0 and C(i, j) = C(j, i)) for i 6= j. No candle can
be reused or put on top of itself. You cannot use the candles {1, . . . , k} anymore, as they have already
been fixed to the floor.

(a) (6 points) Describe an algorithm to find a solution of minimum cost.

(b) (5 points) Prove the correctness of your algorithm.

(c) (3 points) Give a runtime analysis of your algorithm in the previous part.
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7 Fancy Sequence (11 points)

Let A[1], . . . , A[n] be an array. Call a (not necessarily contiguous) subsequence [A[i1], . . . , A[ik]] fancy
if k ≤ 2, or if for all j /∈ {1, k}, we have 17A[ij] < A[ij+1] + A[ij−1].

This question asks you to provide an algorithm to compute the length of the longest fancy subse-
quence of a given length-n array A. The sequence need not be contiguous. You may assume arith-
metic operations (addition, division and multiplication) and comparisons (<, >, ==) can be done in
constant time.

(a) (6 points) For i < j, let f (i, j) denote the length of the longest fancy subsequence of A[i..n]
whose first two elements are A[i] and A[j]. Write a recurrence relation for f (i, j) and specify
the base case(s).

(b) (3 points) Give a polynomial-time algorithm to compute the length of the longest fancy subse-
quence of A. You may write pseudocode.

(c) (2 points) Give a runtime analysis of your algorithm.
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8 Switchings and Signings (14 points)

Let G = (V, E) be a connected, undirected graph on n vertices as input. Every edge e has a sign
σ(e) ∈ {−1,+1}, initially equal to +1. We will call an assignment of signs to all the edges in G a
signing.

We call a signing σ balanced if for every cycle C in G, the product of signs of edges in the cycle is
equal to 1, i.e.,

∏
e∈C

σ(e) = 1.

(a) (2 points) A partial signing is given for the below graph. Sign the remaining edges so that the
resulting signing is balanced.

A

B

C D

E

F

−1

+1
−1

+1

−1

BE
CD
CF
AC
AF

You are allowed to perform the following operation known as a switching — choose a vertex v
and toggle the sign of all edges incident to v, i.e., update the sign on every edge e incident to v
from σ(e) to −σ(e).

(b) (4 points) Prove that any signing of G constructed via a sequence of switching operations must
be balanced. Recall that initially all the edge signs are +1.

(c) (4 points) Let T be a spanning tree of G, and σT be an arbitrary signing of edges in T. Prove
that there is a unique balanced signing σ of G such that σ(e) = σT(e) for all e ∈ T.
Hint: first try to show that there is at least one such balanced signing (part (b) might be useful for this),
and next show that there is at most one balanced signing that agrees with σT .

(d) (4 points) Let σ be a balanced signing of G. Show that there exists a sequence of switching
operations that produces σ and give an algorithm that takes in G and σ as input and produces
this sequence of switching operations. Prove the correctness and analyze the running time of
your algorithm.
Hint: consider using the statement in part (c).
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9 Flowww (12 points)

Recall that in each iteration of the Ford-Fulkerson method, we push as much flow as possible along
an augmenting path from S to T. For this problem, consider all possible executions of Ford-Fulkerson,
which can use any augmenting path, and Edmonds-Karp, an implementation of Ford-Fulkerson that
uses BFS to select the augmenting path in each iteration. All edge capacities in the network must be
non-negative integers.

a) (6 points) Add one directed edge and its capacity to the graph below that maximizes the largest
possible number of iterations of Ford-Fulkerson. If no edge can be added to strictly increase
the maximum number of iterations, leave the graph blank and fill in the ”No such edge” box.

S

A

B

C

D

T

100

100

200

200

100

100

200

200

� No such edge

i) What is the new maximum number of iterations?

ii) What are the paths of the flow, as well as the units pushed across each path, found by the
algorithm once it is run to completion? You may not need all the rows in the table.

Path Units

b) (6 points) Add one directed edge and its capacity to the graph below that maximizes the largest
possible number of iterations of Edmonds-Karp. If no edge can be added to strictly increase
the maximum number of iterations, leave the graph blank and fill in the ”No such edge” box.
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S

A

B

C

D

T

100

100

200

200

100

100

200

200

� No such edge

i) What is the new maximum number of iterations?

ii) What are the paths of the flow, as well as the units pushed across each path, found by the
algorithm once it is run to completion? You may not need all the rows in the table.

Path Units
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