
U.C. Berkeley — CS170 : Algorithms Midterm 1
Lecturers: Alessandro Chiesa and Jelani Nelson February 20, 2020

Midterm 1

1 Comparing asymptotics (4 points)

For each question, fill in all circles that apply.
f = O(g)? g = O(f)?

f (n) = 4n g(n) = 16log2(n) i iy
f (n) = (

√
n + n)(30

√
n) g(n) = n2 iy i

f (n) = n3 g(n) = nlog3(26) i iy
f (n) = n0.001 g(n) = log2 n i iy

• g(n) = 16log2 n = 24 log2 n = 2log2 n4
= n4, so g(n) = O(f (n)) as exponential functions grow

more than polynomial functions.

• f (n) = O(n1.5), so f (n) = O(g(n)) by polynomial powers

• log3(27) = 3 > log3(26), so g = O(f) by polynomial powers

• Any polynomial grows more than any power of log

Midterm 1 A. Chiesa & J. Nelson

2 True or False? (5 points)

Mark your choice for each of the following. Fill in the bubble completely, as incomplete markings
will not be given credit.
Grading: +1 for each correct answer, 0 for leaving blank, and −1 for each incorrect answer. Any
negative score will affect your entire exam.

(a) (1 point) A DAG does not necessarily have a unique topological ordering.

hxTrue hFalse

Consider the following DAG:

A
B

C

Two valid linearizations/topological orderings are A, B, C and A, C, B

(b) (1 point) On graphs with negative edge weights, Dijkstra does not work since it does not nec-
essarily halt; otherwise, once it halts, it outputs the correct solution.

hTrue hxFalse

Dijkstra will always halt on finite graphs. The reason why Dijkstra fails is it assumes that edge
weights are positive.

(c) (1 point) If DFS on a directed graph G = (V, E) produces exactly one back edge, then it is
always possible to remove an edge e from the graph G such that G′ = (V, E− {e}) is a DAG.

hxTrue hFalse

DFS finds a back-edge iff the graph is cyclic. Therefore the graph with the removed back edge
is acyclic, as its DFS does not have a back-edge.

(d) (1 point) If the directed graph G contains a cycle, and removing an edge from G can make it
acyclic, then any DFS on G would produce exactly one back-edge.

hTrue hxFalse

Consider the following graph:

A B

C

D

The graph has two cycles, A → B → C and A → B → D. Removing A → B makes the graph
acyclic, but the DFS with lexiographic order on the vertices has two back-edges.

2

Midterm 1 A. Chiesa & J. Nelson

(e) (1 point) If DFS on a directed graph G = (V, E) produces two back edges, there must be at least
two strongly connected components which each have at least 2 vertices in the original graphhTrue hxFalse

The answer to the previous part is also a counterexample for this one. It is one strongly con-
nected component.

3

Midterm 1 A. Chiesa & J. Nelson

3 Recurrences (8 points)

Write down the solutions to the following recurrence relations (only the final answer is needed).
Write down the tightest bound that you can derive. You may use big-O notation.

(a) (2 points) T(n) = 23T(n
3) + 2n3

O(n3)
a

bd = 23
27 < 1. Using the Master theorem, we get O(n3).

(b) (2 points) T(n) = 3T
(

n
1
3

)
+ 5n, and T(3) = 3.

O(n)

Solution 1:

Consider the recursion tree for this recurrence relationship to find the total work done as

∑
of layers
i=0 work done at the i-th layer.

At the i-th layer, we have 3i nodes, with each node doing O(n
1
3i) work. Therefore, the work

done at the i-th layer is on the order of 3in
1
3i .

We reach the base case after k layers when n
1

3k = 3. Taking the log of both sides and rearranging
the terms gives us k = log log n, which is the height of our tree.

Hence, the total work done is ∑
log log n
i=0 3in

1
3i = n + 3n

1
3 + ... + 3log log nn

1
3log log n . We can bound

all terms but the first by 3log log nn
1
3 since 3log log n is the largest value 3i attains and n

1
3 is the

largest value n
1
3i attains.

Therefore, the summation of all but the first term can be bounded by 3log log nn
1
3 log log n, which

is O(n). Since the first term in our summation is n and the remaining terms can be bound by
O(n), the runtime is O(n).

Solution 2:

We know that the recurrence S(n) = 3S(n
4) + 5n is O(n), so T(n) = O(S(n)) = O(n).

(This is a tight bound as T(n) = Ω(n) since T(n) does at least 5n2 work)

(c) (2 points) T(n) = 8T(n− 3) + 1, and T(0) = T(1) = T(2) = 1.

O(2n)

We have 8i nodes at layer i which do constant work and there are n/3 layers. The work done
in the last layer is 8n/3−1. So in total we have ∑n/3−2

j=1 8j = 8n/3−1
8−1 = O(8n/3) = O(2n)

(d) (2 points) T(n) = T(n/5) + T(4n/5) + 3n2

O(n2)

We proceed using a method we learned from Median of Medians from Homework 2, Question
4. We “guess” that T(n) = O(n2) from the 3n2 term; with this we say that T(n) ≤ c× n2 for
some c > 0. Plugging this into the recurrence relation:

T(n) ≤ c
(n

5

)2
+ c

(
4n
5

)2
+ 3n2

≤
(

17c
25

+ 3
)

n2

4

Midterm 1 A. Chiesa & J. Nelson

Recall we want T(n) ≤ c · n2, plugging in the above this means

17c
25

+ 3 ≤ c

Which is valid for c ≥ 75
8 . Thus we see that T ≤ 75

8 n2, and T(n) = O(n2). Notice we cannot get
a tighter bound than this since the recurrence relation itself has a 3n2 term.

5

Midterm 1 A. Chiesa & J. Nelson

4 Dijkstra’s (6 points)

Execute Dijkstra’s algorithm on the following graph starting at vertex A and breaking ties alphabet-
ically.
Here is the algorithm for reference. Assume that decreasekey does nothing if the vertex is not in the
heap.

Algorithm 1 Dijkstras(G, l, s)

for all u ∈ V do
dist(u) = ∞
prev(u) = null

end for
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty do

u = deletemin(H)
for all edges (u,v) ∈ E do

if dist(v) > dist(u) + l(u, v) then
dist(v) = dist(u) + l(u, v)
prev(v) = u
decreasekey(H, v)

end if
end for

end while
return dist

A

B

C

D E

F

G

3

−7

1

−3

4

4

1

8

Fill in the following table with the shortest paths computed by Dijkstra’s algorithm:

A B C D E F G
0 3 -7 0 2 1 7

6

Midterm 1 A. Chiesa & J. Nelson

5 Factorials (10 points)

In this question, assume you can multiply two d-bit integers in time O(d1.59). Given an integer n,
design an algorithm to compute n! that runs in time O(n1.59 logc n) for some constant c > 0. Hint:
divide and conquer.

(a) Describe your algorithm succinctly below.

Solution. Let P(k, k′) = ∏k′
i=k i be the product of integers {k, k + 1, · · · , k′}. Recursively

compute x1 = P(1, dn/2e) and x2 = P(dn/2e+ 1, n) and output x1 · x2.

(b) Provide a rigorous analysis for the runtime of your algorithm. Recall you showed on home-
work that log(n!) = Θ(n log n).

Solution. Let T(k) be the runtime of computing the product of k integers, each of at most
log n bits. Computing x1 · x2 takes O

(
(k log n)1.59) time, since x1, x2 are of at most k log n

bits. Then the runtime of the algorithm is given by

T(k) = 2T(k/2) + (k log n)1.59.

This leads to the bound
T(k) = O

(
k1.59 log k · log1.59 n

)
.

It follows that T(n) = O
(

n1.59 log2.59 n
)

. You can see this by looking at the recurrence tree.

Notice that there are log k layers, and the i-th layer has 2i
(

k
2i log n

)1.59
≤ (k log(n))1.59

work. There are log k layers, the total amount of work is at most

log k · (k log n)1.59 = k1.59 log k log1.59 n.

One can improve the bound by a more careful calculation:

T(k) =
log k

∑
i=1

2i
(

k
2i log n

)1.59

≤
(

k1.59 log1.59 n
)
·

∞

∑
i=1

2i 1
21.59i

≤
(

k1.59 log1.59 n
)
·

∞

∑
i=1

(
2
3

)i

= O
(

k1.59 log1.59 n
)

.

7

Midterm 1 A. Chiesa & J. Nelson

6 Fast Force Computation (10 points)

5 charged particles are placed on a line. Particle i is placed at point i on the x-axis with charge ci. The
force on particle j in the system is

f j = ∑
i<j

ci
(i− j)2 −∑

i>j

ci
(i− j)2 .

(a) Set up two polynomials p(x) and q(x) so that f1, . . . , f5 appear as coefficients of p(x) · q(x). (It
is okay if p(x) · q(x) have other irrelevant coefficients as well.) Your answer should depend on
c1, . . . , c5.

Solution.

p(x) = c1x4 + c2x3 + c3x2 + c4x + c5

q(x) = − 1
16

x8 − 1
9

x7 − 1
4

x6 − x5 + x3 +
1
4

x2 +
1
9

x +
1
16

The idea of reversing one of the coefficients/taking successive dot products is very similar
to HW3 Q6. One could start with the equation for the coefficient rk, and manipulate it to
get the sums that compute f j.

f j = ∑
i<j

ci
(i− j)2 −∑

i>j

ci
(i− j)2

This can be understood as the computation of successive dot products between the vectors[
c1 c2 c3 c4 c5

]
,
[1

16
1
9

1
4 1 0 −1 − 1

4 − 1
9 − 1

16

]
We can implement the successive dot product by polynomial multiplication and flipping
the first vector. If r = p · q = r0 + r1x + . . . + r12x12, then r4 = c1

16 + c2
9 + c3

4 + c4 = f5,
r3 = f4, etc.

(b) What is the index of the coefficient of p(x) · q(x) corresponding to f3? (e.g. if it is the coefficient
of x2, write 2.)

Solution 1.

6

Points were only awarded if part (a) was correct.

8

Midterm 1 A. Chiesa & J. Nelson

7 Tree matches (20 points)

Let T be an unweighted and undirected tree on vertex set V = {1, . . . , 2n}. E(T) is the set of T’s
edges, and V(T) is the set of its vertices. We call a collection of n pairs P = {(u1, v1), . . . , (un, vn)} a
valid pairing if for i = 1, . . . , n, ui 6= vi and each vertex v ∈ V occurs in exactly one of the n pairs. We
define the cost of a valid pairing P as

fT(P) :=
n

∑
i=1

dT(ui, vi)

where dT(a, b) is the length of the shortest path between a and b in T. In this question we will see an
O(n) time algorithm to compute the minimum cost of a valid pairing; in particular, to compute

OPT(T) := min
P valid pairing

fT(P).

We emphasize that OPT(T) is a number — namely the minimum value attained by f (We don’t ask
you to output the a pairing with minimum cost.)

(a) (5 points) Let P∗ = {(u1, v1), . . . , (un, vn)} be a valid pairing such that fT(P∗) = OPT(T) and
let pt denote the unique path between vertices ut and vt in T. Prove that for any i, j ∈ {1, . . . , n}
such that i 6= j, pi and pj are edge-disjoint. We say two paths pi and pj are edge-disjoint if the
collection of edges used by pi does not intersect the collection of edges used by pj. You are
encouraged to illustrate your proof idea in a diagram.
Hint: What if for some i < j, pi and pj shared an edge e? Can you make a small change to P∗ to obtain
a new pairing P′ with f (P′) < f (P∗)?

Solution:
Notice how fT(P) is the sum of the shortest paths of all pairs in P. The high level idea is
ideally we don’t want to ’double count’ an edge, as we are trying to minimize the summa-
tion.

Let’s consider the following diagram.

1

2

4

3

5

6

Let’s consider the case where the pairs are: {(1, 3), (2, 6), (4, 5)}. In this pairing the edge
(2, 4) is used by the shortest path from 2 to 6 and from 4 to 5. Instead it would be better
to have the pairs, (2, 5) and (4, 6) (which are edge-disjoint), as the shared edges would no
longer be used.

Formally said, suppose pi and pj intersect, then replacing pi and pj with the two paths in-
duced by pi∆pj strictly decreases the cost. Since P∗ is optimal, its cost cannot be decreased

9

Midterm 1 A. Chiesa & J. Nelson

and hence all pi, pj pairs must be edge-disjoint.

(b) (5 points) Let P∗ and pt be defined as in part (a) and let L ⊆ E(T) be a subset of edges defined
as follows:

L := {e : ∃pt such that e ∈ pt}.

Deleting an edge e ∈ E(T) splits T into two trees Te,1 and Te,2. Prove that e ∈ L if and only if
|V(Te,1)| and |V(Te,2)| are both odd numbers.
Try to use the result of part (a) to show that if |V(Te,1)| and |V(Te,2)| are both even, then e /∈ L. You
will additionally need to argue that if |V(Te,1)| and |V(Te,2)| are both odd, then e ∈ L.

Solution.
The first thing to notice is that not all edges in E are used in L, and that all vertices appear
exactly once in the n pairs. In addition, because T is a tree, there must be exactly one path
between every pair of vertices that doesn’t repeat vertices. The question asks to prove an
if and only if, so we need to prove both directions.
Proof that oddness implies e ∈ L:
If |V(Te,1)| and |V(Te,2)| are both odd numbers, then any valid pairing must contain a pair
(u, v) such that u ∈ V(Te,1) and v ∈ V(Te,2). Since any path between Te,1 and Te,2 must
pass through e (as T is a tree), it must be in L.

Proof that e ∈ L implies oddness:
We will prove the contrapositive, i.e., if |V(Te,1)| and |V(Te,2)| are both even, e /∈ L. e
must appear in every path between Te,1 and Te,2, and by part (a), it can appear at most in
one path. On the other hand the number of paths between Te,1 and Te,2 must be an even
number and hence e must appear in 0 paths, which means e /∈ L.

10

Midterm 1 A. Chiesa & J. Nelson

(c) (10 points) Use the result of part (b) to devise an algorithm to compute OPT(T). Full points
will be given for an O(n)-time algorithm.
Hint: Observe that OPT(T) = f (P∗) = |L| where L is defined in part (b).

Solution.
We want to construct an algorithm that finds all the odd sized subtrees, so that we can
utilize part b, to find the edges that connect the odd sized subtrees. We also know the
number of vertices is even (specifically 2n), and so if a subtree has an odd number of
vertices, we know that the set of all other vertices must also be odd because odd + odd
must equal even.
The algorithm is as follows: Pick an arbitrary vertex r and run DFS starting at r augmented
with a counter that for each visited vertex v, keeping track of the size of the subtree at v
(mod 2). This counter will be used to determine whether the size is even or odd. For each
edge e in T, one of its endpoints u can be identified as a ‘child’ and the other endpoint
v as a ‘parent’ in the DFS tree. If the size of the subtree rooted at u, the child is 1 mod 2
(odd), deleting the edge splits the tree into two odd-sized components, and so e is in |L|.
Otherwise, deleting the edge splits the tree into two even-sized components, and e is not
in |L| a

aFootnote: if you store the size of the subtree rather than the size mod 2, each arithmetic operation would take
O(log n) time, and the algorithm would be O(n log n) time. Points were not docked for this solution.

11

Midterm 1 A. Chiesa & J. Nelson

8 Trickster negative cycles (22 points)

(a) (4 points) Draw a weighted directed graph G with the following properties:

(i) it contains a negative-weight cycle,

(ii) it has two vertices S and T such that the length of the shortest path between S and T is
positive.

Make sure to explicitly write the weight of each directed edge in the graph you draw! The
distance between S and T in your graph should be positive.

Solution.

S T

W0

W1

W2

1

−5

−50

−30

3

The negative cycle in this picture does not affect the distance from S to T.

You could also just not connect the cycle to the graph, and this would accomplish the same.

12

Midterm 1 A. Chiesa & J. Nelson

(b) (8 points) Consider the following graph:

S A

C

E
B

T0

T1

T2 U0

U1

U2

V0

V1

V2

W0

W1

W2

3

−2
1

1

−1 −1

−1

−1 −1

−1

−5

−5
−5 10

5
8

20

15

3
3

−1

−10

3

3

The graph has exactly four negative cycles: T0T1T2, (which we will call cycle T), U0U1U2 (which
we will call cycle U), V0V1V2 (which we will call cycle V), W0W1W2 (which we will call cycle
W).
We say that the distance path between nodes X and Y is not well-defined if for any path from X
to Y, you can find a strictly shorter path (e.g. there’s a path of length 10 from X to Y, one of
length 5 from X to Y, one of length 0, one of length -5, etc)

Notice how if there is a negative cycle on the path from the X to the Y, then the distance path is
not well defined.

(i) Consider what happens if all negative cycles except one are removed from the graph. You
would like the distance from S to B to be well-defined.
Mark all of the negative cycles for which keeping only that negative cycle results in the
distance from S to B being well-defined. xT hU hV xW
We want to choose all cycles which are not on a path from S to B. Notice how there is a

path from S to B, going through V and a different one going through U, but no path going
T or W. Thus we want T and W because there is a well defined path if these cycles are the
only ones in the graph.

(ii) Consider what happens if all negative cycles except one are removed from the graph. You
would like the distance from S to E to be well-defined.
Mark all of the negative cycles for which keeping only that negative cycle results in the
distance from S to E being well-defined. xT xU hV xW
We want to choose all cycles which are not on a path from S to E. Notice how there is a

path from S to E, going through V, but no path going through T, U or W. Thus we want T,
U and W because there is a well defined path if these cycles are the only ones in the graph.

(iii) Consider what happens if all negative cycles except one are removed from the graph. You
are interested if Bellman-Ford starting from S then reports that distances are not well-
defined.

13

Midterm 1 A. Chiesa & J. Nelson

Mark all of the negative cycles for which keeping only that negative cycle results in Bellman-
Ford starting from S reporting that distances are not well-defined.xT xU xV hW
We want to choose cycles are on the path from S to any other vertex that is remaining in

the graph. Essentially what this ends up being is the cycles that are reachable from s. The
only cycle not reachable from S is W. So, the answer is T, U, and V.

(iv) Now consider what happens if all negative cycles are removed from the graph, and you
run Bellman-Ford starting from S. True or false: The shortest-paths tree produced by
Bellman-Ford in this case is independent of the order in which it updates the edges.

hxTrue hFalse
The shortest path tree is unique (considering all negative cycles are gone), and since Bell-
man Ford computes the shortest path tree when there are no negative cycles, it must return
the same answer.

14

Midterm 1 A. Chiesa & J. Nelson

The main insight from the previous problem is the shortest path can still be well-defined between
some pairs of vertices despite the existence of negative cycles.

(c) (10 points) Give an algorithm that takes in a weighted directed graph G = (V, E) (poten-
tially with negative weight cycles) along with two vertices s and t as input, and outputs the
length of the shortest path between s and t if it is well-defined and the string “no well-defined

shortest path” otherwise.
Any algorithm that correctly solves this problem and runs in time polynomial in |V| and |E|
will receive full credit. You may freely use algorithms covered in lecture in a black-box fashion.
Hint: modify the graph and feed the modified graph to the Bellman–Ford algorithm.

(i) Give a description of your algorithm.

Solution 1: Notice in this problem we specifically only care about the length of the
path from s to t. We also know that Bellman Ford can detect negative cycles, but due
to the fact mentioned in the previous statement, we only care about negative cycles
that could potentially be on the path from s to t. Negative cycles can be in three places
in relation to a path of s and t:

i. On the path (i.e. there exists a path between s through the cycle to t)
ii. The negative cycle is reachable from s but can’t reach t

iii. The negative cycle can reach t but s can’t reach it

We need to check for each case if this cycle is relevant to the length of the path from s
to t.

i. If it is on the path, then we want to keep the cycle, because it causes the problem
to have a not well-defined shortest path from s to t.

ii. If the negative cycle can’t reach t but is reachable from s, then we don’t want this
cycle because it is not relevant to us. Specifically, Bellman Ford would assign
vertices in this cycle a distance because s can reach it.

iii. If the negative cycle can reach t but s can’t reach it, then Bellman Ford will never
update the distances of the vertices in the cycle to be not ∞, as the distances
computed in Bellman Ford is from s to the vertices, so these cycles don’t affect
the correctness of the algorithm.

We want to remove vertices that cannot reach t. To do this, we reverse the graph and
run explore starting on t and remove all vertices that are not visited by explore. Then,
we can run Bellman Ford, and if there is a negative cycle in the graph, then there is
no well-defined shortest path from s to t, and if there is not a negative cycle, then we
return the length that Bellman Ford returns for the distance from s to t.

Solution 2: From the previous section ”Common Misconceptions”, notice how the
main problem is that the negative cycle might take many iterations before Bellman
Ford updates t’s distance correctly. To fix this, the idea of this solution is we want to
change all negative cycles to be extremely negative (in fact −∞ big), so that we finish
in poly |V| and |E|, as Bellman Ford will definitely favor a path with a negative cycle
if it can.
To do this, we first compute the SCCs of the graph using the SCC algorithm. Then,
for every SCC, run Bellman Ford choosing an arbitrary vertex in the SCC to be s to
determine if there is a negative cycle in the SCC. If there is, make one edge in the SCC
−∞ in a modified graph G′ (which starts initially as a copy of the original graph).

15

Midterm 1 A. Chiesa & J. Nelson

Then run Bellman Ford on G′. If t becomes −∞, then we know that it must have
gone through a negative cycle, otherwise, return the length from s to t returned by
this Bellman Ford.
Example:

S
T

V0

V1

V2

2100

−∞

−1
−1

−1

1

Common Misconception
A incorrect solution was the following:

Let a be the distance from s to t after running Bellman-Ford for |V| iterations.
Let b be the distance from s to t after running Bellman-Ford for 2|V| iterations.

If a = b, output as the distance. Otherwise, output ”not well defined”.

This solution would produce an incorrect output for graphs where the shortest path
does not go through the negative cycle, so running Bellman Ford a second time would
not result in a different distance for t. In order to guarantee correctness, you have to
run this graph for the length of the maximum possible negative path which could be

on the order of ∑e∈edges |e|
|weight of smallest negative cycle| iterations (longest possible path divided

by length of smallest negative cycle). This is not poly in |V| or |E|, so any solution
that tried to do run Bellman Ford for multiple iterations without modifying the graph
received no points.
Example:

S
T

V0

V1

V2

2100

−1

−1
−1

1

1

Note that you need to run 2100+1
3 iterations of Bellman Ford in order for the distance

to t to be updated.

16

Midterm 1 A. Chiesa & J. Nelson

(ii) Give a run-time analysis of your algorithm.

Solution 1:
Reversing the graph takes O(|E|) time. explore takes O(|V| + |E|) time. Creating
the modified graph takes O(|E|) time. Bellman-Ford on the modified graph takes
O(|V| · |E|) time. The runtime of the entire algorithm is O(|V| · |E|).
Solution 2:
We run Bellman Ford on all SCCs. The runtime is vi is the number of vertices in SCC i,
and ei is the number of edges in SCC i. The runtime of this is the ∑number of SCCs

i=1 viei ≤
∑number of SCCs

i=1 vi|E| ≤ |E||V| Running Bellman Ford on the modified graph is |V||E|,
so the overall runtime is |V||E|.

17

	Comparing asymptotics (4 points)
	True or False? (5 points)
	Recurrences (8 points)
	Dijkstra's (6 points)
	Factorials (10 points)
	Fast Force Computation (10 points)
	Tree matches (20 points)
	Trickster negative cycles (22 points)

