## Midterm 1

Name:

SID:

## Name and SID of student to your left:

## Name and SID of student to your right:

## Exam Room:

10 Evans1 Pimentel2050 VLSBWheeler Auditorium540AB CoryOther

Please color the checkbox completely. Do not just tick or cross the box.

## Rules and Guidelines

- The exam is out of $\mathbf{8 5}$ points and will last $\mathbf{1 1 0}$ minutes.
- Answer all questions. Read them carefully first. Not all parts of a problem are weighted equally.
- Write your student ID number in the indicated area on each page.
- Be precise and concise. Write in the solution box provided. You may use the blank page on the back for scratch work, but it will not be graded. Box numerical final answers.
- The problems may not necessarily follow the order of increasing difficulty.
- Any algorithm covered in the lecture can be used as a blackbox.
- Throughout this exam (both in the questions and in your answers), we will use $\omega_{n}$ to denote the first $n^{\text {th }}$ root of unity, i.e., $\omega_{n}=e^{2 \pi i / n}$. So $\omega_{16}$ will denote the first $16^{\text {th }}$ root of unity, i.e., $\omega_{16}=e^{2 \pi i / 16}$.
- Good luck!


## Discussion Section

Which of these do you consider to be your primary discussion section(s)? Feel free to choose multiple, or to select the last option if you do not attend a section. Please color the checkbox completely. Do not just tick or cross the boxes.Fred Zhang Wheeler 202 • Tu 5-6pmJialin Li Etcheverry 3105 • Tu 5-6pmTiffany Chien Etcheverry 3109 •W 9-10amSidhanth Mohanty Wheeler 130 •W 9-10amTeddy Tran Moffitt Library 106 •W 10-11amEmaan Hariri Hearst Field Annex B5 • W 12-1pmDee Guo Wheeler 224 •W 12-1pmArpita Singhal Dwinelle 234 •W 1-2pmGillian Chu Barrows 136 •W 1-2pmRachel De Jaen Barrows 155 - W 1-2pmJoshua Turcotti Wheeler 20 - W 2-3pmVarun Jhunjhunwalla Wheeler 202 • W 2-3pmVishnu Iyer Etcheverry 3113 (Advanced Section) • W 2-3pmAvni Singhal Wheeler 30 •W 3-4pmJiazheng Zhao Dwinelle 229 •W 3-4pmRishi Veerapaneni Wheeler 224 •W 3-4pmJeff Xu Evans 9 •W 3-4pmNoah Kingdon Wheeler 202 • W 5-6pmNeha Kunjal Hildebrand B51 • Th 11-12pmChristina Jin Evans 9 • Th 12-1pmNoah Krakoff Moffitt Library 103 • Th 1-2pmAjay Raj Wheeler 202 • Th 2-3pm

SID: $\quad$ Midterm 1

## 1 Comparing asymptotics (4 points)

For each question, fill in all circles that apply.

$$
\begin{aligned}
& f(n)=4^{n} \\
& f(n)=(\sqrt{n}+n)(30 \sqrt{n}) \\
& f(n)=n^{3} \\
& f(n)=n^{0.001}
\end{aligned}
$$

$$
\begin{array}{l|cc}
g(n)=16^{\log _{2}(n)} & f=O(g) ? & g=O(f) ? \\
g(n)=n^{2} & \bigcirc & \bigcirc \\
g(n)=n^{\log _{3}(26)} & \bigcirc & \bigcirc \\
g(n)=\log _{2} n & \bigcirc & \bigcirc
\end{array}
$$

## 2 True or False? (5 points)

Mark your choice for each of the following. Fill in the bubble completely, as incomplete markings will not be given credit.
Grading: +1 for each correct answer, 0 for leaving blank, and -1 for each incorrect answer. Any negative score will affect your entire exam.
(a) (1 point) A DAG does not necessarily have a unique topological ordering.

$$
\text { OTrue } \quad \text { False }
$$

(b) (1 point) On graphs with negative edge weights, Dijkstra does not work since it does not necessarily halt; otherwise, once it halts, it outputs the correct solution.

$$
\text { True } \quad \text { False }
$$

(c) (1 point) If DFS on a directed graph $G=(V, E)$ produces exactly one back edge, then it is always possible to remove an edge $e$ from the graph $G$ such that $G^{\prime}=(V, E-\{e\})$ is a DAG.
OTrue $\quad$ False
(d) (1 point) If the directed graph $G$ contains a cycle, and removing an edge from $G$ can make it acyclic, then any DFS on $G$ would produce exactly one back-edge.
OTrue $\bigcirc$ False
(e) (1 point) If DFS on a directed graph $G=(V, E)$ produces two back edges, there must be at least two strongly connected components which each have at least 2 vertices in the original graph
OTrue $\bigcirc$ False

| SID: |
| :--- | :--- |
| 3 Recurrences (8 points) |

Write down the solutions to the following recurrence relations (only the final answer is needed). Write down the tightest bound that you can derive. You may use big-O notation.
(a) (2 points) $T(n)=23 T\left(\frac{n}{3}\right)+2 n^{3}$ $\square$
(b) (2 points) $T(n)=3 T\left(n^{\frac{1}{3}}\right)+5 n$, and $T(3)=3$. $\square$
(c) (2 points) $T(n)=8 T(n-3)+1$, and $T(0)=T(1)=T(2)=1$.
(d) $\left(\mathbf{2}\right.$ points) $T(n)=T(n / 5)+T(4 n / 5)+3 n^{2}$ $\square$

## 4 Dijkstra's (6 points)

Execute Dijkstra's algorithm on the following graph starting at vertex A and breaking ties alphabetically.
Here is the algorithm for reference. Assume that decreasekey does nothing if the vertex is not in the heap.

```
Algorithm 1 Dijkstras(G, l, s)
    for all \(u \in V\) do
        \(\operatorname{dist}(\mathrm{u})=\infty\)
        \(\operatorname{prev}(u)=\) null
    end for
    \(\operatorname{dist}(\mathrm{s})=0\)
    \(H=\operatorname{makequeue}(V)\) (using dist-values as keys)
    while \(H\) is not empty do
        \(\mathbf{u}=\) deletemin \((H)\)
        for all edges \((u, v) \in E\) do
            if \(\operatorname{dist}(v)>\operatorname{dist}(u)+l(u, v)\) then
                \(\operatorname{dist}(v)=\operatorname{dist}(u)+l(u, v)\)
                \(\operatorname{prev}(v)=u\)
                decreasekey \((H, v)\)
            end if
        end for
    end while
    return dist
```



Fill in the following table with the shortest paths computed by Dijkstra's algorithm:

| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |

## $5 \quad$ Factorials (10 points)

In this question, assume you can multiply two $d$-bit integers in time $O\left(d^{1.59}\right)$. Given an integer $n$, design an algorithm to compute $n$ ! that runs in time $O\left(n^{1.59} \log ^{c} n\right)$ for some constant $c>0$. Hint: divide and conquer.
(a) Describe your algorithm succinctly below.

(b) Provide a rigorous analysis for the runtime of your algorithm. Recall you showed on homework that $\log (n!)=\Theta(n \log n)$.


## 6 Fast Force Computation (10 points)

5 charged particles are placed on a line. Particle $i$ is placed at point $i$ on the $x$-axis with charge $c_{i}$. The force on particle $j$ in the system is

$$
f_{j}=\sum_{i<j} \frac{c_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{c_{i}}{(i-j)^{2}}
$$

(a) Set up two polynomials $p(x)$ and $q(x)$ so that $f_{1}, \ldots, f_{5}$ appear as coefficients of $p(x) \cdot q(x)$. (It is okay if $p(x) \cdot q(x)$ have other irrelevant coefficients as well.) Your answer should depend on $c_{1}, \ldots, c_{5}$.

$$
\begin{aligned}
& p(x)=\square \\
& q(x)=\square
\end{aligned}
$$

(b) What is the index of the coefficient of $p(x) \cdot q(x)$ corresponding to $f_{3}$ ? (e.g. if it is the coefficient of $x^{2}$, write 2 .)
$\square$

## 7 Tree matches (20 points)

Let $T$ be an unweighted and undirected tree on vertex set $V=\{1, \ldots, 2 n\} . E(T)$ is the set of $T^{\prime}$ s edges, and $V(T)$ is the set of its vertices. We call a collection of $n$ pairs $P=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ a valid pairing if for $i=1, \ldots, n, u_{i} \neq v_{i}$ and each vertex $v \in V$ occurs in exactly one of the $n$ pairs. We define the cost of a valid pairing $P$ as

$$
f_{T}(P):=\sum_{i=1}^{n} d_{T}\left(u_{i}, v_{i}\right)
$$

where $d_{T}(a, b)$ is the length of the shortest path between $a$ and $b$ in $T$. In this question we will see an $O(n)$ time algorithm to compute the minimum cost of a valid pairing; in particular, to compute

$$
\operatorname{OPT}(T):=\min _{P \text { valid pairing }} f_{T}(P) .
$$

We emphasize that $\operatorname{OPT}(T)$ is a number - namely the minimum value attained by $f$ (We don't ask you to output the a pairing with minimum cost.)
(a) (5 points) Let $P^{*}=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ be a valid pairing such that $f_{T}\left(P^{*}\right)=\operatorname{OPT}(T)$ and let $p_{t}$ denote the unique path between vertices $u_{t}$ and $v_{t}$ in $T$. Prove that for any $i, j \in\{1, \ldots, n\}$ such that $i \neq j, p_{i}$ and $p_{j}$ are edge-disjoint. We say two paths $p_{i}$ and $p_{j}$ are edge-disjoint if the collection of edges used by $p_{i}$ does not intersect the collection of edges used by $p_{j}$. You are encouraged to illustrate your proof idea in a diagram.
Hint: What if for some $i<j, p_{i}$ and $p_{j}$ shared an edge e? Can you make a small change to $P^{*}$ to obtain a new pairing $P^{\prime}$ with $f\left(P^{\prime}\right)<f\left(P^{*}\right)$ ?

(b) (5 points) Let $P^{*}$ and $p_{t}$ be defined as in part (a) and let $L \subseteq E(T)$ be a subset of edges defined as follows:

$$
L:=\left\{e: \exists p_{t} \text { such that } e \in p_{t}\right\} .
$$

Deleting an edge $e \in E(T)$ splits $T$ into two trees $T_{e, 1}$ and $T_{e, 2}$. Prove that $e \in L$ if and only if $\left|V\left(T_{e, 1}\right)\right|$ and $\left|V\left(T_{e, 2}\right)\right|$ are both odd numbers.
Try to use the result of part (a) to show that if $\left|V\left(T_{e, 1}\right)\right|$ and $\left|V\left(T_{e, 2}\right)\right|$ are both even, then $e \notin L$. You will additionally need to argue that if $\left|V\left(T_{e, 1}\right)\right|$ and $\left|V\left(T_{e, 2}\right)\right|$ are both odd, then $e \in L$.

(c) (10 points) Use the result of part (b) to devise an algorithm to compute OPT(T). Full points will be given for an $O(n)$-time algorithm.
Hint: Observe that $\operatorname{OPT}(T)=f\left(P^{*}\right)=|L|$ where $L$ is defined in part $(b)$


## 8 Trickster negative cycles ( 22 points)

(a) (4 points) Draw a weighted directed graph $G$ with the following properties:
(i) it contains a negative-weight cycle,
(ii) it has two vertices $S$ and $T$ such that the length of the shortest path between $S$ and $T$ is positive.

Make sure to explicitly write the weight of each directed edge in the graph you draw! The distance between $S$ and $T$ in your graph should be positive.
$\square$
(b) (8 points) Consider the following graph:


The graph has exactly four negative cycles: $T_{0} T_{1} T_{2}$, (which we will call cycle $T$ ), $U_{0} U_{1} U_{2}$ (which we will call cycle $U$ ), $V_{0} V_{1} V_{2}$ (which we will call cycle $V$ ), $W_{0} W_{1} W_{2}$ (which we will call cycle W).

We say that the distance path between nodes $X$ and $Y$ is not well-defined if for any path from $X$ to $Y$, you can find a strictly shorter path (e.g. there's a path of length 10 from $X$ to $Y$, one of length 5 from $X$ to $Y$, one of length 0 , one of length -5 , etc)
(i) Consider what happens if all negative cycles except one are removed from the graph. You would like the distance from $S$ to $\mathbf{B}$ to be well-defined.
Mark all of the negative cycles for which keeping only that negative cycle results in the distance from $S$ to $B$ being well-defined.

$$
\begin{array}{|llll|}
\hline \bigcirc T & \bigcirc U & \bigcirc V & \bigcirc W \\
\hline
\end{array}
$$

(ii) Consider what happens if all negative cycles except one are removed from the graph. You would like the distance from $S$ to $\mathbf{E}$ to be well-defined.
Mark all of the negative cycles for which keeping only that negative cycle results in the distance from $S$ to $E$ being well-defined.
$\bigcirc T \quad \bigcirc u \quad \bigcirc V \quad \bigcirc W$
(iii) Consider what happens if all negative cycles except one are removed from the graph. You are interested if Bellman-Ford starting from $S$ then reports that distances are not welldefined.
Mark all of the negative cycles for which keeping only that negative cycle results in BellmanFord starting from $S$ reporting that distances are not well-defined.

$$
\begin{array}{|llll|}
\hline \bigcirc T & \bigcirc U & \bigcirc V & \bigcirc W \\
\hline
\end{array}
$$

(iv) Now consider what happens if all negative cycles are removed from the graph, and you run Bellman-Ford starting from $S$. True or false: The shortest-paths tree produced by Bellman-Ford in this case is independent of the order in which it updates the edges.


The main insight from the previous problem is the shortest path can still be well-defined between some pairs of vertices despite the existence of negative cycles.
(b) (10 points) Give an algorithm that takes in a weighted directed graph $G=(V, E)$ (potentially with negative weight cycles) along with two vertices $s$ and $t$ as input, and outputs the length of the shortest path between $s$ and $t$ if it is well-defined and the string "no well-defined shortest path" otherwise.
Any algorithm that correctly solves this problem and runs in time polynomial in $|V|$ and $|E|$ will receive full credit. You may freely use algorithms covered in lecture in a black-box fashion. Hint: modify the graph and feed the modified graph to the Bellman-Ford algorithm.
(i) Give a description of your algorithm.

(ii) Give a run-time analysis of your algorithm.


