MIDTERM 2 SOLUTIONS

1. Let A be 8×10 matrix of rank 7 . Determine which of the following statements are true and which are false and explain your answer.
(a) For every vector \mathbf{b} in \mathbb{R}^{8} the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) There are some vectors \mathbf{b} in \mathbb{R}^{8} such that $A \mathbf{x}=\mathbf{b}$ has no solutions.
(c) The equation $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every \mathbf{b} in \mathbb{R}^{8}.
(d) If the equation $A \mathbf{x}=\mathbf{b}$ is not inconsistent then it has infinitely many solutions.

Solution. (a) is false because $\operatorname{Col} A$ has dimension 7 and one can find \mathbf{b} in \mathbb{R}^{8} but not in $\operatorname{Col} A$. By the same reason (b) is true. (c) is false as we already explained that for some \mathbf{b} the system is inconsistent. Finally, (d) is true. Indeed, $\operatorname{Nul} A$ has dimension 3. If $\mathbf{x} \in \mathbb{R}^{10}$ is a solution then $\mathbf{x}+\mathbf{y}$ is a solution for all \mathbf{y} in $\operatorname{Nul} A$.

Another possible explanation: A has 7 pivot columns. There are 3 free variables and there is a zero row in the reduced echelon form of A.
2. (a) Find eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right]
$$

(b) Compute A^{k} for arbitrary positive k.

Solution.

(a) The characteristic equation

$$
\operatorname{det}(A-\lambda I)=-\lambda(2-\lambda)-3=\lambda^{2}-2 \lambda-3=0
$$

has two roots $\lambda_{1}=3$ and $\lambda_{2}=-1$. The corresponding eigenvectors are $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$.
(b) We have $A=P D P^{-1}$ where

$$
D=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right], \quad P=\left[\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right] .
$$

Therefore

$$
A^{k}=P D^{k} P^{-1}=\left[\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
3^{k} & 0 \\
0 & (-1)^{k}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{4} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3^{k}+3(-1)^{k}}{4} & \frac{3^{k+1}-3(-1)^{k}}{4} \\
\frac{3^{k}+(-1)^{k+1}}{4} & \frac{3^{k+1}+(-1)^{k}}{4}
\end{array}\right] .
$$

3. Let L be the line in \mathbb{R}^{3} spanned by the vector $\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}$ and $T(\mathbf{x})=\operatorname{proj}_{L} \mathbf{x}$ denote the orthogonal projection onto L.
(a) Compute the standard matrix A of the linear transformation T. (b) Find an orthogonal matrix P and a diagonal matrix D such $A=P D P^{-1}$.

Solution.(a) Use the formula $T(\mathbf{x})=\left(\mathbf{x} \cdot\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)\right)\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)$. Get

$$
T\left(\mathbf{e}_{1}\right)=T\left(\mathbf{e}_{2}\right)=T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right] .
$$

Therefore

$$
A=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right] .
$$

(b) We have to find an orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ such that $\mathbf{v}_{1}=c\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)$. We can choose $\mathbf{v}_{2}=d\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right), \mathbf{v}_{3}=f\left(\mathbf{e}_{1}+\mathbf{e}_{2}-2 \mathbf{e}_{3}\right)$. Then choose constant c, d, f to get vectors of norm 1 . Use $P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right]$ to get

$$
P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right], \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

4. Find the equation $y=\beta_{0}+\beta_{1} x$ of the least squares line which best fits the data points

$$
(1,0),(2,1),(4,2),(5,3) .
$$

Solution. We have to find the least squares solutions of the system

$$
\beta_{0}+\beta_{1}=0, \beta_{0}+2 \beta_{1}=1, \beta_{0}+4 \beta_{1}=2, \beta_{0}+5 \beta_{1}=3 .
$$

Write it in the matrix form

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right] .
$$

Multiplying by the transposed matrix gives

$$
\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
6 \\
25
\end{array}\right]
$$

Solve by your favorite method to get $\beta_{0}=-0.6, \beta_{1}=0.7$.
5. Let A be an $n \times n$ matrix satisfying the equation

$$
\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)=0
$$

for some real numbers λ_{1}, λ_{2}, such that $\lambda_{1} \neq \lambda_{2}$. Show that A is diagonalizable. (Hint: show that $\operatorname{Nul}\left(A-\lambda_{2} I\right)$ and $\operatorname{Col}\left(A-\lambda_{2} I\right)$ are eigenspaces of A.)

Solution. Since $\operatorname{Nul}\left(A-\lambda_{2} I\right)$ consists of vectors \mathbf{v} such that $\left(A-\lambda_{2} I\right) \mathbf{v}=\mathbf{0}$ which is equivalent to $A \mathbf{v}=\lambda_{2} \mathbf{v}$, we obtain that $\operatorname{Nul}\left(A-\lambda_{2} I\right)$ consists of eigenvectors of A with eigenvalue λ_{2}. Assume that \mathbf{w} lies in $\operatorname{Col}\left(A-\lambda_{2} I\right)$ then $\mathbf{w}=\left(A-\lambda_{2} I\right) \mathbf{x}$ for some \mathbf{x} in \mathbb{R}^{n}. Then we get

$$
\left(A-\lambda_{1} I\right) \mathbf{w}=\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \mathbf{x}=0
$$

Therefore \mathbf{w} lies in $\operatorname{Nul}\left(A-\lambda_{1} I\right)$ and hence \mathbf{w} is an eigenvector of A with eigenvalue λ_{1}. This shows that $\operatorname{Col}\left(A-\lambda_{2} I\right)$ is a subspace of the eigenspace with eigenvalue λ_{1}. If V_{1} and V_{2} are eigenspaces of A with eigenvalues λ_{1} and λ_{2} respectively, we get

$$
\operatorname{dim} V_{1} \geq \operatorname{dim} \operatorname{Nul}\left(A-\lambda_{2} I\right), \quad \operatorname{dim} V_{2}=\operatorname{dim} \operatorname{Col}\left(A-\lambda_{2} I\right)
$$

Hence

$$
\operatorname{dim} V_{1}+\operatorname{dim} V_{2} \geq \operatorname{dim} \operatorname{Nul}\left(A-\lambda_{2} I\right)+\operatorname{dim} \operatorname{Col}\left(A-\lambda_{2} I\right)=n
$$ and therefore A is diagonalizable. Note that in fact we have the equality

$$
\operatorname{dim} V_{1}+\operatorname{dim} V_{2}=\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{2} I\right)+\operatorname{dim} \operatorname{Col}\left(A-\lambda_{2} I\right)=n
$$

