Question 1

The fundamental equation to use is

$$
\frac{K c}{R_{\theta}}=\frac{1}{M_{\mathrm{w}}}\left[1+\frac{1}{3} q^{2} R_{\mathrm{g}}^{2}\right]+2 B c
$$

where $q=\frac{4 \pi n}{\lambda_{0}} \sin \left(\frac{\theta}{2}\right)$.
(a) The extrapolation to $\theta=0$ allows us to determine B and thus the quality of the solvent from the slope of the plot. We see that for solvent $\mathrm{B} B>0$ and for solvent A $B=0$. Per $B=\left(\frac{1}{2}-\chi\right) \bar{V}_{1} \frac{N^{2}}{M^{2}}$, we see that solvent B is the better solvent.
(b) As $B=0$ from the Zimm plot, solvent A is a theta solvent.
(c) Using the extrapolation to $c=0$, we can find R_{g} per

$$
0.3355 \cdot 10^{-6} \sin ^{2}\left(\frac{\theta}{2}\right)+1.006=\frac{1}{M_{\mathrm{w}}}\left[1+\frac{1}{3} \frac{16 \pi^{2} n^{2}}{\lambda_{0}^{2}} \sin ^{2}\left(\frac{\theta}{2}\right) R_{\mathrm{g}}^{2}\right]
$$

This gives $M_{\mathrm{w}}=9.94 \cdot 10^{5} \mathrm{~g} / \mathrm{mol}$ and $R_{\mathrm{g}}=26.8 \mathrm{~nm}$.
(d) Repeating the same procedure as (d) gives $M_{\mathrm{w}}=1.01 \cdot 10^{6} \mathrm{~g} / \mathrm{mol}$ and $R_{\mathrm{g}}=47.3 \mathrm{~nm}$.
(e) The coil expansion factor is $\frac{R_{\mathrm{g}}}{R_{\mathrm{g}, \theta}}=\frac{47.3}{26.8}=1.76$.
(f) The characteristic ratio is given by

$$
C_{\infty}=\frac{\left\langle h^{2}\right\rangle_{o}}{n l^{2}}=\frac{6 R_{\mathrm{g}, \theta}^{2}}{n l^{2}}
$$

We can determine n from $n=2 N=2 \frac{M_{\mathrm{w}}}{M_{0}}=1.93 \cdot 10^{4}$. As $l=1.54 \AA$, we have

$$
C_{\infty}=\frac{6 \cdot(26.8 \mathrm{~nm})^{2}}{1.93 \cdot 10^{4} \cdot(0.154 \mathrm{~nm})^{2}}=9.42
$$

(f) We can evaluate the radius of gyration using

$$
R_{\mathrm{g}}=\left(\frac{C_{\infty} n}{6}\right)^{0.5} l=\left(\frac{9.42 \cdot 1.93 \cdot 10^{4}}{6}\right)^{0.5} \cdot 0.154 \mathrm{~nm}=26.8 \mathrm{~nm}
$$

By construction, this was calculated based on the solvent a, a theta solvent, as theta solvents have the unperturbed nature that is needed for this calculation.

Question 2

(a) We know we can relate osmotic pressure to molecular weight by

$$
\frac{\Pi}{c R T}=\frac{1}{M_{\mathrm{n}}}+B c
$$

As we don't have the necessary data to make an extrapolation to $c=0$, we will assume that contribution from the $B c$ term is negligible.
(b) M_{n} is evaluated by

$$
M_{\mathrm{n}}=\frac{c R T}{\Pi}=\frac{0.00133 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \cdot 303.15 \mathrm{~K} \cdot 82.1 \frac{\mathrm{~cm}^{3} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}}{300 \mathrm{dyne} / \mathrm{cm}^{2} \cdot \frac{1 \mathrm{~atm}}{1.013 \cdot 10^{6} \text { dyne } / \mathrm{cm}^{2}}}=1.12 \cdot 10^{5} \mathrm{~g} / \mathrm{mol}
$$

(c) If the solvent is a good solvent, $B>0$ and we can assume that the $B c$ term will have a positive contribution to the osmotic pressure. The value computed in (b) is thus lower than the true molecular weight of the polymer in order to account for the contribution of $B c$.
(d) As indicated in the previous parts, the value of the molecular weight obtained is the number-averaged molecular weight M_{n}.
(e) From our formula for osmotic pressure, if c is constant, the source of the increase can come from either the M_{n} term or the B term. Our possible options are the polymer has a lower molecular weight, the solvent quality for that polymer is better than for the first polymer, or some combination of the two along with the possibility of M_{n} being greater of the solvent quality being lower as long as the other terms counterbalance it.

Question 3

(a) We know that the critical composition is given by

$$
\phi_{\mathrm{c}, \mathrm{PE}}=\frac{N_{\mathrm{PCHE}}^{1 / 2}}{N_{\mathrm{PE}}^{1 / 2}+N_{\mathrm{PCHE}}^{1 / 2}}
$$

where the values of N are in the Flory-Huggins lattice. We note that the partial volumes of PCHE and PE are given by, along with the reference

$$
\begin{aligned}
\bar{V}_{\mathrm{PCHE}} & =\frac{110 \mathrm{~g} / \mathrm{mol}}{0.92 \mathrm{~g} / \mathrm{cm}^{3}}=119.6 \mathrm{~cm}^{3} / \mathrm{mol} \\
\bar{V}_{\mathrm{PE}} & =\frac{28 \mathrm{~g} / \mathrm{mol}^{0}}{0.784 \mathrm{~g} / \mathrm{cm}^{3}}=35.7 \mathrm{~cm}^{3} / \mathrm{mol} \\
\bar{V}_{\mathrm{ref}} & =\frac{56 \mathrm{~g} / \mathrm{mol}}{0.784 \mathrm{~g} / \mathrm{cm}^{3}}=71.4 \mathrm{~cm}^{3} / \mathrm{mol}
\end{aligned}
$$

We evaluate the real value of $N_{\mathrm{n}, \mathrm{PCHE}}$ to be 23.6. Converting to the Flory-Huggins lattice is done by

$$
N_{\mathrm{PCHE}}=N_{\mathrm{n}, \mathrm{PCHE}} \cdot \frac{\bar{V}_{\mathrm{PCHE}}}{\bar{V}_{\mathrm{ref}}}=39.5
$$

We then use the above equation for $\phi_{\mathrm{c}, \mathrm{PE}}$ to find that $N_{\mathrm{PE}}=88.9$. Converting this to M_{n} gives

$$
M_{\mathrm{n}, \mathrm{PE}}=N_{\mathrm{PE}} \frac{\bar{V}_{\mathrm{ref}}}{\bar{V}_{\mathrm{PE}}} \cdot M_{0}=88.9 \cdot 2 \cdot 28 \mathrm{~g} / \mathrm{mol}=4.98 \cdot 10^{3} \mathrm{~g} / \mathrm{mol}
$$

(b) We evaluate χ_{c} per

$$
\chi_{\mathrm{c}}=\frac{1}{2}\left(\frac{1}{N_{\mathrm{PE}}^{1 / 2}}+\frac{1}{N_{\mathrm{PCHE}}^{1 / 2}}\right)^{2}=0.035
$$

(c) As PCHE is denser than PE, the phase rich with PCHE (phase $1, \phi_{\mathrm{PE}, 2}=0.15$) will be at the bottom of the beaker.
(d) We are given that the total mass of the sample is 20 g and $\phi=0.3$. We can perform balances on the total mass and volume fraction to yield the linear system

$$
\begin{aligned}
V_{\mathrm{PE}} \rho_{\mathrm{PE}}+V_{\mathrm{PCHE}} \rho_{\mathrm{PCHE}} & =20 \mathrm{~g} \\
\frac{V_{\mathrm{PE}}}{V_{\mathrm{PE}}+V_{\mathrm{PCHE}}} & =0.3
\end{aligned}
$$

Solving this yields

$$
\begin{aligned}
V_{\mathrm{PE}} & =6.82 \mathrm{~cm}^{3} \\
V_{\mathrm{PCHE}} & =15.9 \mathrm{~cm}^{3} \\
m_{\mathrm{PE}} & =\rho_{\mathrm{PE}} V_{\mathrm{PE}}=5.35 \mathrm{~g} \\
m_{\mathrm{PCHE}} & =\rho_{\mathrm{PCHE}} V_{\mathrm{PCHE}}=14.6 \mathrm{~g}
\end{aligned}
$$

(e) We can perform balances on the overall amounts of PE and PCHE along with balances on each phase. This yields the four equations

$$
\begin{aligned}
V_{\mathrm{PE}, I}+V_{\mathrm{PE}, I I} & =V_{\mathrm{PE}} \\
V_{\mathrm{PCHE}, I}+V_{\mathrm{PCHE}, I I} & =V_{\mathrm{PCHE}} \\
-0.85 V_{\mathrm{PE}, I}+0.15 V_{\mathrm{PCHE}, I} & =0 \\
-0.35 V_{\mathrm{PE}, I I}+0.65 V_{\mathrm{PCHE}, I I} & =0
\end{aligned}
$$

Solving this yields

$$
\begin{aligned}
V_{\mathrm{PE}, I} & =2.38 \mathrm{~cm}^{3} \\
V_{\mathrm{PE}, I I} & =4.44 \mathrm{~cm}^{3} \\
V_{\mathrm{PCHE}, I} & =13.5 \mathrm{~cm}^{3} \\
V_{\mathrm{PCHE}, I I} & =2.39 \mathrm{~cm}^{3}
\end{aligned}
$$

