problem \#1.
(a) Apply energy conservation.

$$
\begin{aligned}
\int_{0}^{L} \dot{q}(x) d x & =h\left(T(L)-T_{\infty}\right) \\
\Rightarrow & \int_{0}^{L} a x d x=\left[\frac{1}{2} a x^{2}\right]_{0}^{L}=\frac{1}{2} a L^{2} . \\
\therefore \frac{1}{2} a L^{2} & =h\left(T(L)-T_{\infty}\right) \\
T(L) & =T_{\infty}+\frac{a L^{2}}{2 h}
\end{aligned}
$$

Different approach;
Heat equation. Boundary condition.

$$
\begin{aligned}
& \frac{\partial^{2} T}{\partial x^{2}}+\frac{a}{k} x=0 . \quad\left\{\begin{array}{l}
\left.\frac{\partial T}{\partial x}\right|_{x=0}=0 \\
-\left.k \frac{\partial T}{\partial x}\right|_{x=L}=h\left(T(L)-T_{\infty}\right)(x)
\end{array}\right. \\
& T(x)=-\frac{a}{6 k} x^{3}+C_{1} x+C 2 .
\end{aligned}
$$

Apply B, C (1). $\Rightarrow C_{1}=0$.

$$
\therefore T(x)=-\frac{a}{6 k} x^{3}+C_{2} \ldots \text { (4) }
$$

Apply B.C (3)

$$
\begin{aligned}
& \frac{a}{\partial} L^{2}=h\left(T(L)-T_{\infty}\right) \\
& T(L)=T_{\infty}+\frac{a L^{2}}{2 h}
\end{aligned}
$$

(b) From (4)

$$
\begin{aligned}
T(L) & =-\frac{a}{6 k} L^{3}+C_{2}=T_{\infty}+\frac{a L^{2}}{2 h} \\
C_{2} & =T_{\infty}+\frac{a}{6 k} L^{3}+\frac{a L^{2}}{2 h} \\
\therefore T_{(x)} & =-\frac{a}{6 k} x^{3}+T_{\infty}+\frac{a}{6 k} L^{3}+\frac{a L^{2}}{2 h} \\
T(0) & =T_{\infty}+\frac{a}{6 k} L^{3}+\frac{a L^{2}}{2 h}
\end{aligned}
$$

Problem 2. (20 pts)
Consider the fin depicted in the figure, with a standard rectangular ($w \times t$) cross section. The base at $x=0$ is held at $T_{\text {base }}$. The fin length L is long enough to be approximated as infinitely long for heat transfer purposes.

You should assume $L \gg \boldsymbol{w} \gg \boldsymbol{t}$ throughout this
 problem.

This fin is being revised, from the initial (1) to new (2) design. Your task is to specify the new t_{2} and w_{2} which satisfy the following (also summarized in the table below):

- h and L remain fixed for both designs,
- The new design uses a 3-fold higher thermal conductivity.
- You must ensure that both designs exhibit the same temperature profile $T(x)$.
- You must double the overall fin heat rate, q [in Watts].

(a:10 pts) Find an expression for the new $\boldsymbol{t}_{\mathbf{2}}$ which satisfies the above requirements.
(b:10 pts) Find an expression for the new w_{2} which satisfies the above requirements.
a)

FOR INFINITE FIN: $\frac{\theta}{\theta_{b}}=e^{-m x} ; \quad q_{F}=M$

$$
\begin{aligned}
& \text { SINCE } T_{2}(x)=T_{1}(x), \quad \theta_{1}(x)=\theta_{2}(x) \Rightarrow m_{1}=m_{2} \quad m \equiv \sqrt{\frac{h P}{k A c}} \\
& \text { so } \left.\left(\frac{h P}{k A_{C}}\right)_{1}=\left(\frac{K P}{K A_{C}}\right)_{2} \cdots K_{2}=3 K_{1}\right] \ldots \frac{P_{1}}{A_{C_{1}}}=\frac{P_{2}}{3 A_{C_{2}}} \\
& \begin{array}{l}
\text { KNow } P=2 \omega+2 t \approx 2 \omega, \quad A_{c}=\omega t, \text { so } \frac{2 \omega_{1}}{\omega_{1} t_{1}}=\frac{2 \omega_{2}}{3 \omega_{2} t_{2}} \Rightarrow A_{2}=\frac{t_{1}}{3} \\
\operatorname{SINCE} \quad q_{2}=2 q_{1} \quad M_{2}=2 M_{1} \quad \text { OR }\left(\sqrt{h P k A_{c}} \theta_{b}\right)_{2}=2\left(\sqrt{h P k A_{C}} \theta_{b}\right)_{1}
\end{array} \\
& m \equiv \sqrt{\frac{h P}{k A c}} \\
& \Rightarrow P_{1} A_{C_{1}}=2^{2} \cdot 3 P_{2} A_{c_{2}} \quad \Rightarrow 3\left(2 \omega_{2}\right)\left(\omega_{2} t_{2}\right)=2^{2}\left(2 \omega_{1}\right)\left(\omega_{1} t_{1}\right) \\
& \text { OR } 3 \omega_{2}^{2} \frac{t_{1}}{3}=4 \omega_{1}^{2} t_{1} \\
& \Rightarrow w_{2}^{2}=4 w_{1}^{2} \\
& \Rightarrow \omega_{2}=2 \omega_{1}
\end{aligned}
$$

problem 3.
(a)

$$
\begin{aligned}
& B_{i}=\frac{h L_{c}}{k} \\
& L_{c}=\frac{V}{A_{s}}=\frac{L}{6} \quad\left(L_{c}=\frac{L}{2}, \frac{\sqrt{3}}{2} L\right. \text { also 0.k). } \\
& \therefore B_{i}=\frac{h L}{6 k} \\
& B_{i A 1}=\frac{h \times 0.01}{6 k_{A 1}}=\frac{h \times 0.01}{1200}<0.1 \\
& h<12000 .
\end{aligned}
$$

Problem 3: Short Answers (10 pts)
(a: 5 pts). Recall the demo from Lecture 1 when we immersed a small cube of aluminum ($T_{i}=300 \mathrm{~K}$) into liquid nitrogen ($T_{\infty}=77 \mathrm{~K}$). Take the cube edge length to be $L=$ 1 cm . We would like to model this heat transfer using a lumped capacitance treatment.

Properties for Problem 3 k $[\mathrm{~W} / \mathrm{m}-$ $\mathrm{K}]$ ρ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ c $[\mathrm{~J} / \mathrm{kg}-$ $\mathrm{K}]$ Aluminium 200 3,000 Concrete 1.0 2,000			

Calculate the range of convection coefficient h, for liquid nitrogen boiling, for which a lumped treatment would be reasonable.
(b: 5 pts). An aluminum cylinder of diameter 10 cm is very long in the direction out of the page. The cylinder is embedded at a depth of 50 cm in a very large and thick slab of concrete. The top of the slab is at $T_{1}=50^{\circ} \mathrm{C}$, and the cylinder is at $T_{2}=10^{\circ} \mathrm{C}$.

Calculate the heat transfer into the cylinder, per unit length.

USE SI LISTED SHAPE FACTOR

$$
\begin{aligned}
& \operatorname{SinCE} L=0 \Rightarrow L \gg \\
& \text { Ans } \quad z=50 \mathrm{~cm} \quad D=10 \mathrm{~cm} \Rightarrow \quad \Rightarrow>\frac{3 D}{2} \\
& \Rightarrow S=\frac{2 \pi L}{\ln \left(-\frac{4 z}{D}\right)} \\
& q=S k\left(T_{1}-T_{2}\right)=\frac{2 \pi L k}{\ln \left(\frac{4 z}{D}\right)}\left(T_{1}-T_{2}\right)
\end{aligned}
$$

$$
\frac{q}{L}=\frac{2 \pi k}{\ln \left(\frac{4 z}{D}\right)}\left(T_{1}-T_{2}\right)=\frac{2 \pi(1 \mathrm{w} / \mathrm{m} \cdot \mathrm{~K})}{\ln \left(\frac{4 \cdot 0.5 \mathrm{~m}}{0.1 \mathrm{~m}}\right)}(50-10)^{\circ} \mathrm{C}=83.9 \mathrm{w} / \mathrm{m}=\frac{9}{L}
$$

