problem #1. (a) Apply energy conservation. $\int_{0}^{L} \dot{g}(x) dx = h(T(L) - T\infty).$ $\Rightarrow \int_0^L a x d x = \left[\frac{1}{2} a x^2 \right]_0^L = \frac{1}{2} a l^2.$ $\frac{1}{2}\alpha L^2 = h(T(L) - T_{\infty})$ $T(L) = T_{00} + \frac{\alpha L^2}{2h}$ Different approach ; Heat equation. Boundary condition.

$$\frac{\partial^2 T}{\partial x^2} + \frac{\alpha}{R} x = 0 \qquad \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial x} \\ -\frac{R}{R} x = L = h (T_{LL} - T_{RR})^{2}$$

$$T_{123} = -\frac{\alpha}{6k} \chi^3 + C_1 \chi + C_3.$$

Apply B_C D. \Longrightarrow C, = 0.

$$T(x) = -\frac{a}{bk}x^{3} + C_{2} - - - A$$

Apply B.C (D).

$$\frac{\alpha}{2}L^{2} = h(T(L) - T_{\infty})$$

 $T(L) = T_{\infty} + \frac{\alpha L^{2}}{2h}$

(b) From (4)

$$T(L) = -\frac{\alpha}{6k}L^{3} + C_{2} = T_{00} + \frac{\alpha L^{2}}{2h}$$

$$C_{1} = T_{00} + \frac{\alpha}{6k}L^{3} + \frac{\alpha L^{2}}{2h}$$

Problem 2. (20 pts)

Consider the fin depicted in the figure, with a standard rectangular $(w \times t)$ cross section. The base at x=0 is held at T_{base} . The fin length L is long enough to be approximated as infinitely long for heat transfer purposes.

You should assume $L \gg w \gg t$ throughout this problem.

This fin is being revised, from the initial (1) to new (2) design. Your task is to specify the new t_2 and w_2 which satisfy the following (also summarized in the table below):

- h and L remain fixed for both designs,
- The new design uses a 3-fold higher thermal conductivity.
- You must ensure that both designs exhibit the same temperature profile T(x).
- You must double the overall fin heat rate, q [in Watts].

	t	w	k	T(x)	Fin q	$L, h, T_{base}, T_{\infty}$
Initial Design	t_1	WI	k_1	$T_1(x)$	q_1	(no change:
New Design	find t ₂	find w ₂	$k_2 =$	Design for no change,	Design for	(110 change,
		-	$3 * k_1$	$T_2(x) = T_1(x)$	$q_2 = 2^* q_1$	same for bour cases)

(a:10 pts) Find an expression for the new t_2 which satisfies the above requirements.

(b:10 pts) Find an expression for the new w_2 which satisfies the above requirements.

FOR INFINITE FIN:
$$\frac{\partial}{\partial_{L}} = e^{-mx}$$
; $q_{F} = M$
A) SINCE $T_{2}(x) = T_{1}(x)$, $\theta_{1}(x) = \theta_{2}(x) \Rightarrow M_{1} = M_{2}$ $M = \sqrt{\frac{hP}{kAc}}$
so $\left(\frac{hP}{kAc}\right)_{1} = \left(\frac{hP}{kAc}\right)_{2}$... $\left(\frac{k_{2} = 3k_{1}}{k_{1}}\right) \Rightarrow \frac{P_{1}}{Ac_{1}} = \frac{P_{2}}{3Ac_{2}}$
KNOW $P = 2w + 2f \approx 2w$, $Ac = wt$, so $\frac{2w_{1}}{w_{1}t_{1}} = \frac{2w_{2}}{3w_{2}t_{2}} \Rightarrow \frac{t_{2} = \frac{t_{1}}{3}}{t_{2}}$
b) SINCE $I_{2} = 2q_{1}$ $M_{2} = 2M_{1}$ OR $\left(\sqrt{\frac{hPkAc}{\theta_{b}}}\right)_{2} = 2\left(\frac{1hPkAc}{\theta_{b}}\right)_{1}$
 $\Rightarrow P_{1}Ac_{1} = 2^{2} \cdot 3P_{2}Ac_{2} \Rightarrow 3(2w_{1})(w_{1}t_{2}) = 2^{2}(2w_{1})(w_{1}t_{1})$
 $OR 3w_{2}\frac{t_{1}}{3} = 4w_{1}^{2}t_{1} \Rightarrow w_{2}^{2} = 4w_{1}^{2}$
 $\Rightarrow \left(w_{2} = 2w_{1}\right)$

(a) $B_{\lambda} = \frac{hLe}{k}$ $L_{c} = \frac{V}{As} = \frac{L}{b} \left(L_{c} = \frac{L}{2} \cdot \frac{\sqrt{3}}{2} L \text{ also } U.k \right)$ $B_{\lambda} = \frac{hL}{6k}$ $B_{\lambda} = \frac{h \times 0.01}{6k} = \frac{h \times 0.01}{1200} < 0.1$

h < 12000.

Problem 3: Short Answers (10 pts)

(a: 5 pts). Recall the demo from Lecture 1 when we immersed a small cube of aluminum (T_i =300 K) into liquid nitrogen (T_{∞} = 77 K). Take the cube edge length to be L = 1 cm. We would like to model this heat transfer using a lumped capacitance treatment.

Properties for Problem 3	k [W/m- K]	ρ [kg/m³]	c [J/kg- K]
Aluminium	200	3,000	1,000
Concrete	1.0	2,000	1,000

Calculate the range of convection coefficient *h*, for liquid nitrogen boiling, for which a lumped treatment would be reasonable.

(b: 5 pts). An aluminum cylinder of diameter 10 cm is very long in the direction out of the page. The cylinder is embedded at a depth of 50 cm in a very large and thick slab of concrete. The top of the slab is at T_1 =50 °C, and the cylinder is at T_2 =10 °C.

Calculate the heat transfer into the cylinder, per unit length.

USE
$$I^{SI}$$
 LISTED SHAPE FACTOR
SINCE $L = 60 \implies L \gg D$
AND $Z = 50 \text{ cm} D = 10 \text{ cm} \implies Z > \frac{3D}{2}$
 $\implies S = \frac{2\pi L}{l_n \left(\frac{42}{D}\right)}$
 $q = Sk(T_1 - T_2) = \frac{2\pi Lk}{l_n \left(\frac{42}{D}\right)} (\overline{1}_1 - T_2)$
 $\frac{q}{L} = \frac{2\pi k}{l_n \left(\frac{42}{D}\right)} (\overline{1}_1 - \overline{1}_2) = \frac{2\pi (1 \frac{W_{m.K}}{D_1 \frac{W_{m.K}}{W_{m.K}}}}}}$