Name:

- You have 80 minutes to complete the exam.
- This is a closed-book exam. No notes, books, calculators, computers, or electronic aids are allowed.
- Please write neatly. Answers which are illegible for the reader cannot be given credit.
- The Laplace Transform table is provided in a separated sheet of paper. Good Luck!

Question	Points	Score
1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Total	100	

1. (20 points) Use contour integral to compute the following integral.
(1) $(5 \mathrm{pts})$

$$
\begin{aligned}
& \int_{0}^{2 \pi}(1+\cos \theta+i \sin \theta)^{2} d \theta \\
& \int_{0}^{2 \pi}\left(1+e^{i \theta}\right)^{2} d \theta=\oint_{|z|=1}(1+z)^{2} \frac{d z}{i z} \\
= & \frac{2 \pi i}{i} \operatorname{Res}_{z=0}\left(\frac{(1+z)^{2}}{z}\right)=2 \pi
\end{aligned}
$$

(2) (3 pts)

$$
\int_{-\infty}^{+\infty} \frac{1}{(x+i)(x+2 i)} d x
$$

we complete the contour wising upper semi-cinle it encloses no pole. Hence the integral $=0$.

$$
\begin{aligned}
& (3)(7 \mathrm{pts}) \\
& =\int_{-\infty}^{+\infty} \frac{\frac{1}{2}\left(e^{i x}+e^{-i x}\right)}{(x+i)(x+2 i)} d x=\frac{\cos x}{(x+i)(x+2 i)} d x \\
& \left.I_{1}=\int_{-\infty}^{+\infty} \frac{e^{i x}}{(x+i)(x+2 i)} d x=I_{2}\right) \\
& I_{2}=\int_{-\infty}^{+\infty} \frac{e^{-i x}}{(x+i)(x+2 i)} d x=\int_{(x+i)(x+2 i)}^{(x+i)(x+2 i)} d x=0
\end{aligned}
$$

(4) $(5 \mathrm{pts})$

$$
\begin{gathered}
\text { P.V. } \int_{-\infty}^{+\infty} \frac{1}{(x+1)(x+2)} d x \\
=2 \pi i \cdot\left(\frac{1}{2} \operatorname{Res}(x=-1)+\frac{1}{2} \operatorname{Res}(x=-2)\right) \\
=\frac{2 \pi i}{2} \cdot\left(\frac{1}{-1+2}+\frac{1}{-2+1}\right) \\
= \\
0
\end{gathered}
$$

Remark: most common mistake about (3) is say

$$
\text { integral }=\operatorname{Re} \int_{-\infty}^{+\infty} \frac{e^{i z}}{(z+i)(z+2 i)} d z
$$

However, the original integral is.

$$
\int_{-\infty}^{+\infty} \frac{\operatorname{Re}\left(e^{i z}\right)}{(z+i)(z+2 i)} d z
$$

Because $(z+i)(z+2 i)$ is not a real number.

$$
\frac{\operatorname{Re}\left(e^{i z}\right)}{(z+i)(z+2 i)} \neq \operatorname{Re}\left(\frac{e^{i z}}{(z+i)(z+2 i)}\right)
$$

2. (10 points) Write down the general solutions for the following equations
(1) (5pts)

$$
y^{\prime}+3 y=-1
$$

(1) $\quad y_{p}=-\frac{1}{3} \quad$ particular sol'n
(2) $\quad y_{c}=c \cdot e^{-3 x}$

$$
y=y_{p}+y_{c}=-\frac{1}{3}+c e^{-3 x}
$$

(2) (5pts)

$$
y^{\prime}+(x-1) y=0
$$

$$
\begin{aligned}
y & =e^{-\int(x-1) d x} \\
& =C e^{-\frac{x^{2}}{2}+x}
\end{aligned}
$$

3. (10 points) Write down the general solutions to the following equations
(1) $(3 \mathrm{pts}) y^{\prime \prime}+4 y^{\prime}+4 y=0$

$$
\begin{aligned}
& \left(D^{2}+4 D+4\right) y=0 \\
& (D+2)^{2} \quad y=0 \\
& y=c_{1} \cdot e^{-2 x}+c_{2} \cdot x \cdot e^{-2 x}
\end{aligned}
$$

(2) $(7 \mathrm{pts}) y^{\prime \prime}+4 y=e^{x}$

First, we guess a particular solution

$$
y_{p}=a \cdot e^{x} .
$$

plug int in, we have

$$
\begin{gathered}
a \cdot e^{x}+4 \cdot a \cdot e^{x}=e^{x} \\
\Leftrightarrow \quad 5 a=1 \\
a=1 / 5
\end{gathered}
$$

Then, we solve for y_{c}.

$$
\begin{aligned}
& y^{\prime \prime}+4 y=0 \\
\Leftrightarrow & \left(D^{2}+4\right) y=0 \\
\Leftrightarrow & (D+2 i)(D-2 i) y=0 . \\
& y_{c}=c_{1} e^{2 i x}+c_{2} \cdot e^{-2 i x .}
\end{aligned}
$$

Thus $y=\frac{1}{5} e^{x}+c_{1} e^{2 i x}+c_{2} \cdot e^{-2 i x}$
4. (10 points) Answer the following questions about δ functions
(1) $(2 \mathrm{pts}) \int_{-\infty}^{\infty} \delta(x) \cos x d x=$?

$$
=\cos (0)=1
$$

(2) $(2 \mathrm{pts}) \int_{-\infty}^{\infty}[\delta(x)+\delta(2 x-2)] \sin x d x=$?

$$
\begin{aligned}
& =\sin (0)+\frac{1}{2} \sin (1) \\
& =\frac{1}{2} \sin (1)
\end{aligned}
$$

(3) (2pts) $\int_{-\infty}^{\infty} \delta^{\prime}(x+1) e^{2 x} d x=$?

$$
\begin{aligned}
& =-\left.\left(e^{2 x}\right)^{\prime}\right|_{x=-1} \\
& =-2 e^{-2}
\end{aligned}
$$

(4) (4 pts) Solve for $y(x)$ that satisfies the following condition

$$
\left\{\begin{array}{l}
y^{\prime}=2 \delta(x-1) \\
y(0)=-1
\end{array}\right.
$$

Draw the graph of $y(x)$.

$$
y(x)=c+2 \pi(x-1)
$$

use $y(0)=-1$, we get $c=-1$.
Thus $y=-1+\Leftrightarrow(x-1)$

5. (10 points)Laplace transformation. You can either use the Laplace transformation table, or the following integral to find the Laplace transformation.

$$
F(p)=\int_{0}^{\infty} f(t) e^{-p t} d t
$$

(1) (2pts) $f(t)=1+t$

$$
F(p)=\frac{1}{p}+\frac{1}{p^{2}}
$$

(2) (2pts) $f(t)=e^{t}$

$$
F(p)=\frac{1}{p-1}
$$

(3) (2pts) $f(t)=\sin (2 t)$

$$
F(p)=\frac{2}{p^{2}+2^{2}}
$$

(4) (4pts) $f(t)=\int_{0}^{t} \sin (t-\tau) \tau d \tau$ (Hint: use the convolution for Laplace transform)

$$
\begin{aligned}
& f(t) \text { is the convolution } \\
& \text { and } t . \\
& \sin t \longrightarrow \frac{1}{p^{2}+1} \\
& t \longrightarrow \frac{1}{p^{2}}
\end{aligned}
$$

6. (10 points) Find the inverse Laplace transform of the following function. You can either use the Laplace transformation table, or use the inverse Laplace transform integral

$$
f(t)=\frac{1}{2 \pi i} \int_{s-i \infty}^{s+i \infty} e^{p t} F(p) d p
$$

where s is a sufficiently large real number.
(1) (3pts)

$$
F(p)=\frac{1}{p^{2}+1}
$$

One can use the table L3, to get

$$
f(t)=\sin (t)
$$

Or, use integral to get $\operatorname{Res}\left(\frac{e^{p t}}{p^{2}+1}\right)$

$$
=\frac{e^{i t}}{2 i}+\frac{e^{-i t}}{-2 i}=\sin (t)
$$

(2) (4pts) (Hint: try partial fraction)

$$
F(p)=\frac{1}{(p+1)(p+2)(p+3)}
$$

Use partial fraction, we get

$$
F(p)=\frac{1}{p+1} \cdot \frac{1}{+2}+\frac{1}{p+2} \frac{1}{-1}+\frac{1}{p+3} \frac{1}{2}
$$

Thus

$$
f(t)=\frac{1}{2} e^{-t}-e^{-2 t}+\frac{1}{2} e^{-3 t}
$$

(3) (3pts) Hint: write the numerator as $p=(p+2)-2$

$$
\begin{gathered}
F(p)=\frac{p}{(p+2)^{4}} \\
F(p)=\frac{P+2-2}{(P+2)^{4}}=\frac{1}{(P+2)^{3}}-\frac{2}{(P+2)^{4}} \\
f(t)=\frac{1}{2!} t^{2} e^{-2 t}-\frac{2}{3!} t^{3} e^{-2 t}
\end{gathered}
$$

7. (10 points) Use Laplace transform to solve the differential equation

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=e^{-3 t} \\
y(0)=0, \quad y^{\prime}(0)=1
\end{array}\right.
$$

You may use that

$$
L . T .(y)=Y(p), \quad \text { L.T. }\left(y^{\prime \prime}\right)=p^{2} Y(p)-p y(0)-y^{\prime}(0)
$$

By Laplace transform, we have

$$
\text { LiT. }\left(e^{-3 t}\right)=\frac{1}{p+3}
$$

Then, we have

$$
\begin{aligned}
L T\left(y^{\prime \prime}\right)+L T(y) & =L T\left(e^{-3 t}\right) \\
p^{2} Y(p)-1+Y(p) & =\frac{1}{p+3} \\
\therefore \quad\left(1+p^{2}\right) Y(p) & =1+\frac{1}{p+3} \\
Y(p) & =\frac{1}{p^{2}+1}+\frac{1}{\left(p^{2}+1\right)(p+3)} \\
& =\frac{1}{p^{2}+1}+\frac{1}{(p+i)(p-i)(p+3)}
\end{aligned}
$$

Use partial fraction, we get

$$
\begin{aligned}
\frac{1}{(p+i)(p-i)(p+3)}= & \frac{1}{p+i} \frac{1}{(-i-i)(-i+3)}+\frac{1}{p-i} \frac{1}{(i+i)(i+3)} \\
& +\frac{1}{p+3} \frac{1}{(-3+i)(-3-i)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
f(t)=\sin t & +e^{-i t} \frac{1}{(3-i)(-2 i)}+e^{i t} \frac{1}{(3 t i)(2 i)} \\
& +e^{3 t} \frac{1}{10}
\end{aligned}
$$

8. (10 points) Solve the following equation with $a>0$ and $x>0 .{ }^{1}$

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)+y^{\prime}(x)=\delta(x-a) \\
y(0)=0, y^{\prime}(0)=0
\end{array}\right.
$$

We may using matching coif method.
For $x<a, y=0$ is the solution
For $x>a$, the general solution to

$$
\begin{aligned}
y^{\prime \prime}+y^{\prime} & =0 \Leftrightarrow D(D+1) y=0 \\
\text { is } \quad y_{t}(x) & =C_{1}+C_{2} \cdot e^{-x}
\end{aligned}
$$

At $x=a$, we need to have

$$
y_{-}(a)=y_{+}(a)
$$

and

$$
y_{+}^{\prime}(a)-y_{-}^{\prime}(a)=1
$$

Hence

$$
\left\{\begin{array}{l}
0=c_{1}+c_{2} e^{-a} \\
-c_{2} \cdot e^{-a}=1
\end{array}\right.
$$

$$
\begin{aligned}
& \therefore\left\{\begin{array}{l}
c_{2}=-e^{a} \\
c_{1}=1
\end{array}\right. \\
& \therefore \quad y=\left\{\begin{array}{cc}
0 & x<a \\
1-e^{-(x-a)} & x>a
\end{array}\right.
\end{aligned}
$$

${ }^{1}$ The solution is the Green function $G(x ; a)$ for this problem.
\#8. Alternatively, we may use Laplace transform:

$$
\begin{aligned}
\left(p^{2}+p\right) Y(p) & =L(\delta(x-a)) \\
Y(p) & =\frac{1}{p^{2}+p} \cdot L(\delta(x-a))
\end{aligned}
$$

The inverse Laplace transform of $\frac{1}{p^{2}+p}$ is

$$
\frac{1}{p^{2}+p}=\frac{1}{p(p+1)}=\frac{1}{p}-\frac{1}{p+1} \leadsto 1-e^{-x}
$$

Let $F(p)=\frac{1}{p^{2}+p}, G(p)=L(\delta(x-a))$
and $f(x)=1-e^{-x}, \quad g(x)=\delta(x-a)$ be the original function then

$$
\begin{aligned}
y(x) & =(f * g)(x)=\int_{0}^{x} f(x-\tau) g(\tau) d \tau \\
& =\int_{0}^{x} f(x-t) \delta(\tau-a) d \tau \\
& = \begin{cases}1-e^{-(x-a)} & a<x \\
0 & a>x\end{cases}
\end{aligned}
$$

9. (10 points) The Green function $G\left(x ; x_{0}\right)$ for the following problem

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} G\left(x ; x_{0}\right)=\delta\left(x-x_{0}\right), \quad 0<x, x_{0}<1 \\
G\left(0 ; x_{0}\right)=G\left(1 ; x_{0}\right)=0
\end{array}\right.
$$

is given by

$$
G\left(x ; x_{0}\right)= \begin{cases}x\left(x_{0}-1\right) & \text { if } x \leq x_{0} \\ x_{0}(x-1) & \text { if } x_{0}<x\end{cases}
$$

We are going to use the given Green function to solve the following equation

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)=f(x), \quad 0<x<1 \\
y(0)=y(1)=0
\end{array}\right.
$$

(1) (2 pts) Write down the general formula that expresses $y(x)$ using an integral involving G and f.

$$
y(x)=\int_{0}^{1} G\left(x ; x_{0}\right) f\left(x_{0}\right) d x_{0}
$$

(2) (3 pts) Use Green function to solve for y when $f(x)=3 \delta(x-0.3)$.

$$
\begin{aligned}
y(x) & =3 \cdot G(x ; 0.3) \\
& = \begin{cases}3 \cdot x \cdot(-0.7) & x<0.3 \\
3 \cdot 0.3(x-1) & x>0.3\end{cases}
\end{aligned}
$$

(3) (5pts) Use Green function to solve for y when $f(x)=x$.

$$
\begin{aligned}
& y(x)= \int_{0}^{1} G\left(x ; x_{0}\right) f\left(x_{0}\right) d x_{0} \\
&= \int_{0}^{x} G\left(x ; x_{0}\right) f\left(x_{0}\right) d x_{0} \\
&+\int_{x}^{1} G\left(x ; x_{0}\right) f\left(x_{0}\right) d x_{0} \\
&= \int_{0}^{x} x_{0}(x-1) \cdot x_{0} d x_{0} \\
&+\left(x\left(x_{0}-1\right) x_{0} d x_{0}\right. \\
&=\left.(x-1) \cdot \frac{1}{3} x_{0}^{3}\right|_{x_{0}=0} ^{x_{0}=x}+\left.x_{1} \cdot\left(\frac{x_{0}^{3}}{3}-\frac{x_{0}^{2}}{2}\right)\right|_{x_{0}=x} ^{x_{0}=1} \\
&=(x-1) \cdot \frac{1}{3} \cdot x^{3}+x \cdot\left[\left(\frac{1}{3}-\frac{1}{2}\right)-\left(\frac{x^{3}}{3}-\frac{x^{3}}{2}\right)\right] \\
&= \frac{1}{3} x^{4}-\frac{1}{3} x^{3}+-\frac{1}{6} x-\frac{x^{4}}{3}+\frac{x^{3}}{2} \\
&= \frac{1}{6} x^{3}-\frac{1}{6} x . \\
& y(0)=y(1)=0, \\
& y^{\prime \prime}(x)=x .
\end{aligned}
$$

