
Problem 1

We start by drawing a force diagram on the person. Since normal forces are always vertical, we have to assume that the
normal forces on the left and right feet N2 and N1 are torques about the center of mass. Additionally, there are two forces
of friction f2 and f1 on the feet, they also supply torques.

Since there is no vertical acceleration, the vertical equation of motion is

N1 +N2 −Mg = 0

Since there is an angular acceleration to the center of the circle of v2

R , the radial equation of motion is

f1 + f2 =
Mv2

R

Finally, we also need an equation of motion for the torque. Let us take the pivot as the center of mass. We use

τ = r× F =⇒ |τ | = rF sinϕ

Where ϕ is the angle between the force and the lever-arm. the magnitude of the lever arm, r, is the same for all forces
N1, N2, f1, and f2. Let θ be the acute angle between the vertical and the leg, so the angle between the normal forces and the
lever arm is θ and the angle between the friction forces and the lever arm is 90◦ + θ. So, the four torques in the problem are

|τ(f1)| = rf1 sin(90 + θ) = rf1 cos θ, |τ(f2)| = rf2 cos θ, |τ(N1)| = rN1 sin θ, and |τ(N2)| = rN2 sin θ

We will determine the directions in a bit. To find cos θ and sin θ, we draw the right triangle with angle θ, the hypotenuse is
the lever arm r, and the legs are of length d

2 and L. It is clear that

cos θ =
L

r
and sin θ =

d

2r

. Now we can write an equation of motion for the torques. All the torques point in the same direction except for the torque
from N1, which we will make negative. There is no rotational acceleration.

−N1d

2
+
N2d

2
+ f1L+ f2L = 0

We can combine this with the first two equations to solve for N1 and N2, the weights on the outside and inside feet.

0 = −N1d

2
+
N2d

2
+ L(f1 + f2) = −N1d

2
+
d

2
(Mg −N1) + L

(
Mv2

R

)
= −N1d+

Mgd

2
+
LMv2

R
= 0

=⇒ N1 =
Mg

2
+
Mv2L

Rd
and N2 = Mg −N1 =

Mg

2
− Mv2L

Rd
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Problem 2

(a) This is a simple application of conservation of energy.

1

2
kb2 =

1

2
mv2 +

1

2
k(0)2 =⇒ v =

√
k

m
b (1)

(b) This is subtle because there is a collision hidden in the problem. While is true that wheel is rolling without
slipping (which implies that mechanical energy is conserved), this is only true once the wheel has started
moving along the track. More precisely, when the wheel moves from the frictionless surface to the geared track,
it suffers a collision on the first tooth (which is protruding). Energy is in general not conserved in a collision,
and as we will see below is not conserved in this collision.

If we consider the system to be the wheel, then it is clear that momentum is not conserved. The first tooth of
the track exerts an external force on the wheel that changes its velocity. Further, along the track the spring
provides an external force.

Angular momentum around the point of contact is again subtle. We know that the around the point of contact,
the torque due to static friction must be zero. We still have the force of the spring, which provides a torque.
However, at the point of collision, the spring force is zero (x = L), which implies there is no external torque.
At this point of collision, we can use conservation of angular momentum to calculate the necessary velocity.

(c) As noted above, we use the conservation of angular momentum.

Li = mvR (2)

Lf = mv′R + Icmω = mv′R + (mR2)
v′

R
, (3)

where we used the rolling without slipping condition in the last equality. Equating Li and Lf , and solving for
v′

v′ =
v

2
. (4)

Note, energy is not conserved.

(d) After the collision, energy is conserved. We can use this to calculate how close it gets to the wall. First, we
calculate the amount of energy that makes it through the collision:

E =
1

2
mv′2 +

1

2
Iω2 =

1

2
m
v2

4
+

1

2
mR2 v

2

R2

1

4
=

1

4
kb2. (5)

Then,

1

2
k(x− l)2 =

1

4
kb2 =⇒ (x− l) = ± b√

2
(6)

The only physically acceptable solution is x = l − b/
√

2 .

(e) Note that there is no collision when the wheel comes off the track. However, also note that the velocity (and
thus angular velocity because of no-slip) are reversed at this point. The imporant nuance here is that once the
wheel moves on the frictionless surface, it will slip. Furthermore, since there is no friction, there is no force
that changes the angular momentum of the wheel around the CM. Thus, the farthest distance is when v = 0
(but throughout ω = const 6= 0).

1

4
kb2 =

1

2
m(0)2 +

1

2
Iω2 +

1

2
k(x− l)2 (7)

1

4
kb2 =

1

8
kb2 +

1

2
k(x− l)2. (8)

Therefore,

x = l + b/2. (9)
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(f) Again, we calculate the angular momentum around the (stationary) point of collision. However, the angular
momentum consists of two terms: one due to the translational motion of the CM, and the other due to the
rotation about the CM. Then, calling the clockwise direction positive, note that

Li = m(−v′)R + mω2R = −mv′R + mv′R = 0. (10)

Therefore,

Lf = mv′′R = Li = 0. (11)

In other words, the wheel will instantaneously stop.
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Problem 3

We start by drawing a force diagram on a small volume element of water (of mass M) on the surface of the water. I will
draw it in a rotating frame which has acceleration ac = ω2R to the left, towards the center of the circle. This makes for a
fictitious force of Mac pointing to the right.

Since the small volume element of water is in equilibrium, there must be a buoyancy force up and to the left at an angle
θ with respect to the vertical so the water does not accelerate. Note: this buoyancy force will be proportional to geff since
we are in an accelerating reference frame, not g. However, we are only interested in the direction of this buoyancy force, or
θ, since θ is related to the shape of the surface.

Notice that the slope of the surface of the water is equal to tan θ (rise over run). If we find the slope of the surface of the
water as a function of R,

dh

dR
= f(R)

then we can integrate to find the height of the surface h as a function of R:

dh

dR
= f(R) =⇒ dh = f(R) dR =⇒ h(R) =

∫ R

0

f(R) dR

However, we claimed that the slope was equal to tan θ :

dh

dR
= tan θ

So, the goal now is clearly to find tan θ as a function of R. To do so we go back to our force diagram and assume that
acceleration is 0.

FB sin θ = Mac and Fb cos θ = Mg =⇒ tan θ =
Fb sin θ

FB cos θ
=
Mac
Mg

=
ac
g

=
ω2

g
R

=⇒ dh

dR
=
ω2

g
R =⇒ h(R) =

ω2

g

∫
dRR =

ω2

2g
R2

=⇒ A =
ω2

2g
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Yildiz Final Problem 5

December 2019

I’ll use energy to solve this. Letting the gravitational potential energy be
zero when the ball is at the bottom of the dish, we obtain that, when the marble
is displaced by an angle theta relative to the vertical,

U = mg(R− b)(1 − Cosθ) (1)

we can expand the cosine:

Cosθ = 1 +
θ2

2
+ higher order terms (2)

and we neglect the higher order terms to obtain

U =
1

2
mgRθ2 (3)

Cool. The marble is rolling so it has both types of kinetic energy. The linear
kinetic energy is

Etr =
1

2
mv2 =

1

2
mR2θ′2 (4)

and rotational energy is

Erot =
1

2
Iφ′2 (5)

we want to relate φ to θ and subsequentially θ′. Note that rolling without
slipping demands bφ′ = Rθ′ and

Erot =
1

2
I
R2

b2
θ′2 (6)

then the total energy is

Etot =
1

2
mgRθ2 +

1

2
mR2(1 +

2

5
)θ′2 =

1

2
mgRθ2 +

1

2
mR2 7

5
θ′2 (7)

where we substituted in I = 2
5mb

2

finally, we can arrange things to look just like a mass on a spring
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Etot =
1

2
mR(gθ2 +

7

5
Rθ′2) (8)

in analogy with a mass on a spring, whose total energy looks like

Es =
1

2
mv2 +

1

2
kx2 (9)

and has frequency
√

k
m , here we take g to be like k and 7

5R to be m to yield

the answer

ω =

√
5g

7R
(10)
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Yildiz Final Prob 7

December 16, 2019

Ror part a, first we note that v0 = 0. Next, use trig to find θs. We find that

tanθ =
30m

40m
=

3

4
(1)

we then plug into the provided equation:

f ′ =
340

340 − 25Cos(36.9)
500 Hz = 531 Hz (2)

Part B: The smallest angle we have would be θ = 0, which is true when the
train is infinitely far away on the left. The max angle we have is θs = π, when
the train is infinitely far away on the right (these are limiting cases). The first
gives us the frequency

f ′ =
340

340 − 25
500 Hz = 539 Hz (3)

and at θs = π we get

f ′ =
340

340 + 25
500 Hz = 465 Hz (4)

and thus the full range is 469 to 539 Hz.
For the last part, we first find θo by realizing that since the velocity of the

observer is perpendicular to that of the train, we have

θo = 360 − (90 − θs) = 306.87 (5)

where we subtract by 360 since the angle is measured away from the line
from the source to the observer. We can plug this in to obtain

f ′ =
340 + 40Cos(306.87)

340 − 25Cos(36.9)
500 Hz = 568 Hz (6)
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