1)

a) $f^{\alpha d}$ \square Id
so $F_{B}=p A \alpha d \cdot A=$ Volume displaced
We con fill in the proportionality factor by limensian analysis or using $p=\rho g d$

$$
\Rightarrow F_{B}=\rho g V
$$

6)

auer damped: exponential decay before any orellations

unterdayped: oscillations with decaying amplitude

critical! border lecture a these
c) Pascal pressure is transmitted undiminished in an enclosed liquid.
$F=P A \Rightarrow$ grater area means
 greater free cot cost of (ers distance raised)
d) Wी $\xrightarrow{\vec{L}} \vec{r}_{\vec{F}}^{\vec{F}}$ so $\vec{\tau}=\vec{r} \times \vec{F}$ points at of page

So \vec{l} rotates towards you, the reaper, by $\frac{d \vec{l}}{d t}=\vec{\tau}$.
\qquad Constructive interference at center and other fums, destructive interference between, Anplizde decays at lager er x due to distance from wale source.
$2 a$
FBD s for trio masses

FEDs for laver pulley

$$
m_{2} \overbrace{m_{2} g}^{T_{2}}
$$

Note tension in string is constant or pulleys would experience a net torque $\left(b\right.$ ot $\left.I_{\text {pulley }}=0\right)$.
b) Constraint equations came from length of strings.:

Note y top is fixed. The length of the top string is

$$
l_{\text {top, }} \text { shin }=\left(y \text { top }-y_{1}\right)+\left(y_{\text {top }}-y_{p}\right)+\pi R_{\text {top }}
$$

$R_{\text {top is radius of tap pulley. }}$
For the bottom string (with R button the radius of the barton pulley).

$$
\ell_{\text {bottom, } \text { string }}=y_{p}+\left(y_{p}-y_{z}\right)+\pi R_{\text {bottom }}
$$

Taking two time derivatives, we jet

$$
0=-a_{1}-a_{p} \text { and } 0=a_{p}+a_{p}-a_{2}
$$

with a_{p} the acceleration of the baton pulley and $a_{;}$the acceleration af m_{i}. Either of these could to the constraint equations.
C) We wrote N2L from the FBD and use the constraint eq's to solve for $Q_{1}: \quad N 2 L^{m_{1}}: T_{1}-m_{1} g=m_{1} a_{1} \quad N 2 L^{m_{2}} ; T_{2}-m_{2} g=m_{2} a_{2}$

$$
N_{2} l^{p \text { way: }} T_{1}-2 T_{2}=0 \Rightarrow m_{1} a_{1}=22 T_{2}-m_{1} g=2\left(m_{2} g+m_{2} a_{2}\right)-m_{1} g
$$

The constraint equation gives $a_{p}=\frac{a_{2}}{2}$ and $a_{1}=-a_{p}=-\frac{a_{2}}{2}$

$$
\begin{aligned}
& \Rightarrow m_{1} a_{1}=-m_{1} g+2 m_{2} g+2 m_{2}\left(-2 a_{1}\right) \Rightarrow a_{1}\left(m_{1}+4 m_{2}\right)=-\left(m_{1}+2 m_{2}\right) g \\
& \Rightarrow a_{1}=-\frac{\left(m_{1}+2 m_{2}\right)}{\left(m_{1}+4 m_{2}\right)} g
\end{aligned}
$$

Physics 7A - Lecture 2 Final Exam

Problem 3

Collision is elastic, we should apply conservation of energy (1) and conservation of momentum in the x and y direction (2) and (3):

$$
\begin{array}{r}
\frac{1}{2} m V_{0}^{2}+\frac{1}{2} M V^{2}=\frac{1}{2} m \frac{V_{0}^{2}}{4}+\frac{1}{2} M V^{\prime 2} \\
m V_{0}-M V=M V^{\prime} \cos (45) \\
0=M V^{\prime} \sin (45)-m \frac{V_{0}}{2} \tag{3}
\end{array}
$$

Where V and V^{\prime} denote the initial and final velocity of mass M . We see we have 3 equations and 3 unknowns ($\mathrm{M} / \mathrm{m}, \mathrm{V}$, and V^{\prime}). Let's solve for V^{\prime} in (3), then solve for V in (2), and finally substitute in (1) as follows:

$$
\begin{aligned}
V^{\prime} & =\frac{\sqrt{2} m}{2 M} V_{0} \\
\Longrightarrow V & =\frac{m}{M} V_{0}\left(1-\frac{1}{2}\right)=\frac{m}{2 M} V_{0} \\
\Longrightarrow \frac{1}{2} m V_{0}^{2}+\frac{m^{2}}{8 M} V_{0}^{2} & =\frac{1}{8} m V_{0}^{2}+\frac{m^{2}}{4 M} V_{0}^{2} \\
\Longrightarrow \frac{m}{M} & =3 \\
\Longrightarrow \frac{M}{m} & =\frac{1}{3}
\end{aligned}
$$

(4) (a)

The only force in the x-direction is from the spring ese we have

$$
\begin{aligned}
& F_{x}=-k_{x}=m a_{x} \\
& \frac{d^{2} x}{d+2}=-\frac{k}{m} x
\end{aligned}
$$

(6) we need a function $x(y)$ which looks kind of like itself of ter taking tho derivatives. Let's try cosine.
(5) This has three $\frac{x(t)=A \cos (\omega+t \phi)}{T}$

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}\left(A \cos (\omega+t q)=-\omega^{2} A \cos (\omega+t \phi)=-\frac{k}{m} A \cos (\omega x+\phi\right. \\
& s_{c} w=\sqrt{\frac{k}{m}}
\end{aligned}
$$

This gives the solution with two flee producters:

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}}+t \phi\right)
$$

(d) Weave given $x(0)=0$ and $v(u)=v_{c}$

$$
v(t)=-A \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} t+\phi\right)
$$

so

$$
x(0)=A \cos \phi=0
$$

Either $A=0\left(n o\right.$ oscillation) or $\cos \phi=0\left(\phi=\frac{\square}{2}\right)$
$(0)=-A \sqrt{\frac{k}{m}} \sin \left(\frac{\pi}{2}\right)=-A \sqrt{\frac{1 c}{}}=1$
so

$$
A=-v_{0} \sqrt{\frac{m}{k}}
$$

If we plug these into (3), we have

$$
\left.x(t)=-V_{0} \sqrt{\frac{m}{k}} \cos \left(\sqrt{\frac{k}{m}}++\frac{\pi}{2}\right)\right]=V_{0} \sqrt{\frac{m}{k}} \sin \left(\sqrt{\frac{k}{m}}+\right)
$$

5. a) Angular momenticn of M_{1} :

$$
\begin{aligned}
\vec{L}_{1} & =\overrightarrow{r_{1}} \times \overrightarrow{p_{1}} \\
& =M_{1} \cdot \overrightarrow{r_{11}} \\
& =M_{1} v_{1} R_{0}
\end{aligned}
$$

Angular momentum of M_{2} :

$$
\begin{aligned}
\vec{L}_{2} & =\vec{r}_{2} \times \overrightarrow{p_{2}} \\
& =M_{2} V \cdot \overrightarrow{r_{2}} \\
& =M_{2} V R_{0}
\end{aligned}
$$

Angular momentum of pulley:
Since the string moves without slipping, angular velocity $\omega=\frac{v}{R_{0}}$

$$
I_{3}=I_{w}=\frac{I_{v}}{R_{0}}
$$

Using Right hand principle, L_{1}, L_{2}, L_{3} all pointing inwards Thus angular momentum of the system is

$$
\vec{L}=I_{1}+I_{2}+I_{3}=\left(M_{1}+M_{2}\right) v R_{0}+\frac{I v}{R_{0}}
$$

b) Free body dy diagram :
F_{x}, F^{5} don contribute torque on the $a_{x i s}$, Torque from N_{1} and M, g cancel out.

$$
\begin{aligned}
& \tau=M_{2} g R_{0}=\frac{d I}{d t}=\left[\left(M_{1}+M_{2}\right) R_{0}+\frac{I}{R_{0}}\right] a \\
& a=\frac{M_{2} R_{0}^{2}}{M_{1} R_{0}^{2}+M_{2} R_{0}^{2}+I} g
\end{aligned}
$$

Or: Moment of inertia of the system is:

$$
\begin{aligned}
& I I=M_{1} R_{0}^{2}+M_{2} R_{0}^{2}+I \\
& I=M_{2} g R_{0}=\Sigma I \alpha \\
& \alpha=\frac{M_{2} R_{0}}{M_{1} R_{0}^{2}+M_{2} R_{0}^{2}+I} \\
& a=\alpha \cdot R_{0}=\frac{M_{2} R_{0}^{2}}{M_{1} R_{0}^{2}+M_{2} R_{0}^{2}+I}
\end{aligned}
$$

6.

The FBD should include F acting at a radius b from the centre of the yo-yo, the weight $M g$ acting downwards at the centre, the normal force acting upwards at a radius R, and the friction f pointing to the left, acting at a radius R.

We first use the linear Newton's Second Law. The net vertical force must be zero because the yo-yo has no vertical motion:

$$
\sum F_{y}=N-M g=0 \Longrightarrow N=M g
$$

The net horizontal force is

$$
\sum F_{x}=F-f
$$

We would like to find the threshold value for F between slipping and not slipping; the value of static friction at that threshold is its maximum achievable amount

$$
f=f_{\max }=\mu N=\mu M g
$$

Hence,

$$
\sum F_{x}=F-\mu M g
$$

By N2L, we find the acceleration of the centre of mass of the yo-yo:

$$
F-\mu M g=M a_{\mathrm{CM}} \Longrightarrow a_{\mathrm{CM}}=\frac{F}{M}-\mu g
$$

Next, we use the rotational Newton's Second Law. Setting clockwise to be the positive direction (anticipating the yo-yo to roll clockwise when pulled), the net torque on the yo-yo around its centre of mass is

$$
\sum \tau=-b F+R \mu M g
$$

Note that the torque due to $M g$ and N is zero because they are parallel to the radius. The angular acceleration can be found:

$$
-b F+R \mu M g=I \alpha \Longrightarrow \alpha=\frac{1}{I}(R \mu M g-b F)
$$

Rolling without slipping implies

$$
a_{\mathrm{CM}}=R \alpha .
$$

(This can be obtained by taking a time-derivative of the more familiar $v_{\mathrm{CM}}=R \omega$.) Plugging in the two expressions as well as $I=\frac{1}{2} M R^{2}$, we have

$$
\frac{F}{M}-\mu g=\frac{2}{M R}(R \mu M g-b F) \Longrightarrow F=\frac{3 \mu M g}{1+\frac{2 b}{R}}
$$

Note that if you defined anticlockwise to be the positive direction instead, then you might have gotten

$$
F=\frac{\mu M g}{\frac{2 b}{R}-1}
$$

This is incorrect, because the rolling without slipping condition has to have the correct relative sign. If $a_{\mathrm{CM}}>0$, that means the wheel rolls clockwise, and so

$$
a_{\mathrm{CM}}=-R \alpha
$$

Then you would recover the correct result.

1 a If P_{a} is pressure at the top of a body of water, then the pressure at adepth d is $P=P_{0}+$ gd where $p=1 \mathrm{~g} / \mathrm{con}^{3}$ is the density of water

This happens because if we imagine that the water has surface area A, then on the volume of wator
$A \cdot d=V$ there are thee farces: $P_{0} A, P A$, and F grave.
 but tho mass of water is $m=p A d . \Rightarrow P=p a+p d g$.
$16 A$

The equal ion is (and is nit necessary) medium damping $A=\mathrm{F}_{0} / \mathrm{m}$
high damping.
sa as 8 decreases (damping decrees) the peat af A goes up araind wo but nat much else changes. The wild th af peat at half max decreases.
1.(c)

Bernoulli's principle states that an increase in speed in a flowing fluid corresponds to a decrease in pressure. Imagine that we are in the frame of the ball, so that the ball is "not moving" and the air around it is flowing past it. If the ball is not spinning, then the airflow is equal in speed on all sides of the ball. If the ball is spinning, then the side opposing the airflow causes the speed of the current to decrease, while the side promoting the airflow causes the speed of the current to increase. Correspondingly, the pressure on the side promoting the airflow is less than that on the side opposing the airflow. The pressure imbalance causes the ball to experience a "Magnus force" towards the side promoting the airflow, thus curving the trajectory of the flying ball.

The sketch should include the direction of spin, the direction of wind (or the ball's motion), and locations of higher and lower airflow speed or pressure.
1.(d)

Approach 1: To obtain the velocity of a point on the wheel relative to the ground, we add v [its velocity relative to the centre of mass of the wheel] to $v_{c m}$ [the velocity of the centre of mass of the wheel relative to the ground]. For a wheel rotating at angular velocity ω, all points at the same radius from the centre have the same speed $v=\omega r$, while the velocity always points in the tangential direction. Rolling without slipping implies $v_{c m}=\omega r$.

For the top point, the velocity points "forwards" with magnitude $v=\omega r$. For the bottom point, the velocity points "backwards" with magnitude $v=\omega r$. The CM velocity points "forwards" with magnitude $v_{c m}=\omega r$. Thus the velocities of the top and bottom points relative to the ground are, respectively, $v_{c m}+v=$ $2 \omega r=2 v_{c m}$ and $v_{c m}-v=0$.

Approach 2: Rolling without slipping implies that the bottom of the wheel has zero velocity relative to the ground. Instantaneously, treating this point as the pivot, the centre of mass velocity is $v_{c m}=\omega r$, and the velocity of the top of the wheel is $2 \omega r=2 v_{c m}$.
1.(e) We first write $k=2 \pi / \lambda$ and $\omega=2 \pi / T$ in terms of the more familiar wavelength λ and period T. The wavelength is the distance between one peak and the next at any given time, and the period is the time duration between one peak and the next on any given point on the wave. This means that the wave must travel one wavelength is exactly one period. The wave velocity is thus

$$
v=\frac{\lambda}{T}=\frac{\omega}{k}
$$

This can be verified by a simple dimensional analysis: ω has units of s^{-1} and k has units of m^{-1}.
Alternatively, we may track the position x and time t where the peak ($y=A$) occurs. Since $y=A$ whenever $k x-\omega t=0$, we have

$$
x=\frac{\omega}{k} t .
$$

The speed of the wave is

$$
v=\frac{d x}{d t}=\frac{\omega}{k}
$$

Note that it is incorrect to take the derivative $d y / d t$ in an attempt to get the velocity. The time-dependent velocity obtained in this way is that of a single oscillating element along the wave, not the time-independent velocity of the wave pattern travelling along.
2) Lee
(f) \uparrow

A:

$A \rightarrow T_{A}$

B
$\longrightarrow T_{B}$
(4) $T_{A}=T_{B}=T$ (tension consthat thanghout rope)

B: Assume relutive directrm for prestay A, B accelerathers

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} l_{A_{r}}+l_{B_{r}}=l_{\text {total }}=\text { constant } \\
\frac{\square}{B_{B}}=0 \\
\quad a_{A r}=-a_{B r} \\
\left|a_{A r}\right|=\left|a_{B}\right|=a_{r}
\end{gathered}
$$

(1) $a_{A}=a_{p}-a_{r}$
(2) $a_{B}=a_{p}+a_{r}$

$$
l_{\beta}
$$

(3) $\left|a_{p}\right|=\left|a_{c}\right|$ (since corrated on same rope)
(5: (5) $\sum f_{c}=T_{c}-m_{c} g=-m_{c} a_{c}$
(6) $\sum F_{B}=T_{B}=m_{B} a_{B}$
(7) $\sum f_{A}=T_{A}=m_{A} a_{A}$
(8) $\sum F_{P}=T_{C}-T_{A}-T_{B}=0$

8 untrouns: $a_{A}, a_{B}, a_{C}, T_{A} ; T_{B}, T_{C}, a_{B}, a_{B}$ 8 equations \Rightarrow good to go

conturued on rext page

Fourmy on the leffelley side
(6) $T=m_{B} a_{B}$
(7) $T=m_{A} a_{A}$

$$
\begin{aligned}
& m_{B} a_{B}=m_{A} a_{A} \\
& m_{B}\left(a_{P}+a_{r}\right)=m_{A}\left(a_{P}-a_{r}\right) \\
& m_{B} a_{P}+m_{B} a_{r}=m_{A} a_{P}-m_{A} a_{r} \\
& \left(m_{B}-m_{A}\right) a_{P}=-\left(m_{B}+m_{A}\right) a_{r} \\
& \left(m_{A}-m_{B}\right) a_{P}=\left(m_{B}+m_{A}\right) a_{r} \\
& a_{r}=\left(\frac{m_{A}-m_{B}}{m_{B}+m_{A}}\right) a_{P}
\end{aligned}
$$

Pugging, back into (1) +(2)
(1) $a_{A}=a_{P}-\left(\frac{m_{A}-m_{B}}{m_{B}+M_{A}}\right) a_{P}=\left(\frac{2 m_{B}}{m_{A}+m_{A}}\right) a_{P}$
(2) $a_{B}=a_{P}+\left(\frac{m_{A}-m_{B}}{m_{A}+m_{B}}\right) a_{P}=\left(\frac{2 m_{A}}{m_{A}+m_{B}}\right) a_{P}$
fousing on the palley
(8) $T_{C}=T_{A}+T_{B}$

$$
* T_{c}=2 T
$$

fousisy on the right pulley side

$$
\begin{align*}
& T_{c}-m_{c} g=-m_{c} a_{i} \rightarrow \text { suggin (3) } \\
& T_{c}-m_{c} g=m_{c} a_{p} \leftrightarrows \\
& 2 T-m_{c} g=-m_{c} a_{p} \leftrightarrows \text { plyy in (6) or (7) for } T \\
& 2\left(m_{B} a_{B}\right)-m_{C} g=m_{C} a_{p} \longrightarrow \text { pluy in } \tag{2}\\
& 2 m_{B}\left(\frac{2 m_{A}}{m_{A+} m_{B}}\right) a_{P}-m_{C} g=-m_{C} a_{P} \\
& \frac{(2) 2 m_{A} m_{B}}{m_{A}+m_{B}} a_{p}-m_{C} g=-m_{C} a_{p} \\
& \text { Ply back } \\
& \text { into (1), (2),(3) }
\end{align*}
$$

C^{\prime}

$$
\begin{aligned}
& a_{A}=\frac{2 m_{B}}{m_{A}+m_{B}}\left(\frac{m_{C}\left(m_{A}+m_{B}\right) g}{4 m_{A} m_{B}+m_{C}\left(m_{A}+m_{B}\right)}\right) \text { right } \\
& a_{B}=\frac{2 m_{A}}{m_{A}+m_{B}}\left(\frac{m_{C}\left(m_{A}+m_{B}\right) g}{4 m_{A} m_{B}+m_{C}\left(m_{A}+m_{B}\right)}\right) \text { right } \\
& Q_{C}=\frac{m_{C}\left(m_{A}+m_{B}\right) g}{4 m_{A} m_{B}+m_{C}\left(m_{A}+m_{B}\right)} \text { down }
\end{aligned}
$$

7A Lecture 3 Final exam Question 3 Solutions

7A GSI

May 11, 2018

1 Part A

As seen in the diagram 1, we have a chain of length L falling onto the scale. At some time instance, one can see that the chain has dropped x amount of distance and the speed of the chains is v going downwards. One should expect that there is a normal force by the chain onto the scale which creates the reading of the scale.

Also, one should see that the normal force compose of 2 parts. 1 . the weight of the chain which is already at rest on the scale. 2. the force needed to stop the chain for the $d x$ portion.

Define a linear density $\lambda=\frac{M}{L}$, we have the following:

$$
\begin{equation*}
F_{\text {normal }}=F_{\text {stopping }}+F_{\text {gravity }} \tag{1}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
F_{\text {gravity }} & =m g \tag{2}\\
& =\lambda x g . \tag{3}
\end{align*}
$$

While on the term, we need to apply the relationship between momentum and force

$$
\begin{align*}
F_{\text {stopping }} & =\frac{d p}{d t} \tag{4}\\
& =\frac{d m v}{d t} \tag{5}\\
& =\frac{\lambda d x v}{d t} \tag{6}\\
& =\lambda v^{2} \tag{7}
\end{align*}
$$

Figure 1: Diagram for the exam

But the speed v is changing, we need to express it in terms of x. We can apply kinematics

$$
\begin{align*}
v^{2} & =u^{2}+2 a \Delta x \tag{8}\\
& =2 g x . \tag{9}
\end{align*}
$$

Therefore, putting everything together

$$
\begin{align*}
F_{\text {normal }} & =F_{\text {stopping }}+F_{\text {gravity }} \tag{11}\\
& =\lambda x g+2 \lambda x g \tag{12}\\
& =3 \lambda x g \tag{13}
\end{align*}
$$

The problem did not specify what scale it is, lets assume it gives the mass reading by measuring the normal force.

Then the final answer is $3 \lambda x$.

2 Part B

The reading increases linearly with the length which has fallen, so the maximum reading occurs at $x=L$

3 Remarks

Many student only used only the weight of the chain which is at rest on the pan, that will severely reduce the points that one will get because one is not setting up the forces correctly, no calculation using the force-momentum relation and also losing points for getting incorrect answer in both parts.

Energy conservation does not work in here since the collision is inelastic. Any answers related to energy conservation may have points deducted.

Any reasonable mentioning of force-momentum relation will earn one's quite a few points.

Physics 7A - Lecture 3 Final Exam

Problem 4

(For full credit result needed to be derived not simply stated)
a) Consider the sum of the Torques about the pivot:

$$
\begin{align*}
\sum \tau=I \alpha & =\vec{r} \times \vec{F}_{\text {grav }} \tag{1}\\
\Longrightarrow m l^{2} \frac{d^{2} \theta}{d t^{2}} & =-m g l \sin (\theta) \approx-m g l \theta \quad \text { for small } \theta \tag{2}\\
\Longrightarrow \frac{d^{2} \theta}{d t^{2}} & =-\frac{g}{l} \theta \tag{3}
\end{align*}
$$

This is the differential equation describing simple harmonic motion, we can read off the angular frequency $\omega=\sqrt{\frac{g}{l}}$, which implies the regular freuency $f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}$ and the period is $T=\frac{1}{f}=2 \pi \sqrt{\frac{l}{g}}$
b) Follow a similar derivation only now we consider the moment of inertia, I and the force of gravity now acts at the center of mass rather than at a distance l:

$$
\begin{align*}
& \sum \tau=I \alpha=\vec{r} \times \vec{F}_{\text {grav }} \tag{4}\\
& \Longrightarrow I \frac{d^{2} \theta}{d t^{2}}=-m g h \sin (\theta) \approx-m g h \theta \text { for small } \theta \tag{5}\\
& \Longrightarrow \frac{d^{2} \theta}{d t^{2}}=-\frac{m g h}{I} \theta \tag{6}
\end{align*}
$$

Again, we read off the angular frequency $\omega=\sqrt{\frac{m g h}{I}}$, which implies the regular freuency $f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{m g h}{I}}$ and the period is $T=\frac{1}{f}=2 \pi \sqrt{\frac{I}{m g h}}$

Final Exam Physics 7A Lecture 3 Problem 5 Solution

GSI: James Reed Watson

May 10, 2018
(a) Set up free body diagrams and read of the equations of motions for translation and rotation:

$$
\begin{array}{r}
M g-T=M a \\
T R_{0}=I \alpha \\
a=\alpha R_{0} \tag{3}
\end{array}
$$

Plug (3) into (2) to find that $T=I a / R_{0}^{2}$. Solve (1) for $T=M(g-a)$ and plug in the result from before to find $I a / R_{0}^{2}=M(g-a)$. This means that:

$$
\begin{equation*}
a=\frac{M g}{M+I / R_{0}^{2}}=\frac{g}{1+I / M R_{0}^{2}}=\frac{g}{1+\frac{R^{2}}{2 R_{0}^{2}}} \tag{4}
\end{equation*}
$$

Everything is in-plane, so $L=I \omega$. The acceleration is uniform, so the angular acceleration is also uniform. This means that $L=I \alpha t=I a t / R_{0}$. Plugging in the above result:

$$
\begin{equation*}
L(t)=\frac{M R^{2}}{2 R_{0}} \frac{g t}{1+\frac{R^{2}}{2 R_{0}^{2}}}=\frac{M R_{0} g t}{1+2 R_{0}^{2} / R^{2}} \tag{5}
\end{equation*}
$$

Which has the correct units of $[\mathrm{kg}]\left[\mathrm{m}^{2}\right]\left[\mathrm{s}^{-1}\right]$.
There is a second route to the answer, using energy conservation.

$$
\begin{array}{r}
M g h=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2} \\
M g \omega R_{0} t / 2=\frac{1}{2} M \omega^{2} R_{0}^{2}+\frac{1}{2} I \omega^{2} \\
\omega=\frac{g t}{R_{0}\left(1+I / M R_{0}^{2}\right)} \\
L=I \omega=\frac{M t}{R_{0}\left(1 / I+1 / M R_{0}^{2}\right)}=\frac{M R_{0} g t}{1+2 R_{0}^{2} / R^{2}} \tag{9}
\end{array}
$$

(b) The tension in the string is constant in time. We can plug in the result for a into the equation we solved before to find:

$$
\begin{equation*}
T=\frac{M R^{2}}{2 R_{0}^{2}} \frac{g}{1+\frac{R^{2}}{2 R_{0}^{2}}}=\frac{M g}{1+2 R_{0}^{2} / R^{2}} \tag{10}
\end{equation*}
$$

Which has the correct units of $[\mathrm{kg}][\mathrm{m}]\left[\mathrm{s}^{-2}\right]$.
In either method, using forces or energy conservation, one can simply take $T=L /\left(R_{0} t\right)$.

Problem \# 16
a) Mopentum \& Erecgy Consecuation
(1) $m v_{0}=M_{v}-m v_{f}$
(2) $\frac{1}{2} m v^{2}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} M v^{2}+\frac{1}{2} I_{0} w^{2}$
initial.
final

Angubes nomertum about VOM
(3) $m v_{1} \frac{l}{2}=-m v_{1} \frac{l}{2}+I_{0} w$
(i) $\left\{\begin{array}{ll}\text { from eq (1) } & v=\frac{m}{M}\left(v_{0}+v_{f}\right) \\ \text { fiom eq (3) } & \omega=m\left(v_{0}+v_{f}\right) \frac{\ell}{2 \cdot I_{0}}\end{array}\right\} \begin{aligned} & \text { substitute } \\ & \text { eq (2) }\end{aligned}$ and sotue for V_{f}
(2) $V_{f}=\frac{\left(4 I_{0} m-4 I_{0} M+l^{2} m M\right) V_{0}}{4 I_{0} m+4 I_{0} M+l^{2} m M}$
b) Energy conservation
(1) $\frac{1}{2} M v_{0}^{2}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} \frac{I}{p}^{v} \omega^{2}$

Angular momentom abort pivot.
(2) $M v_{0} l=-m v_{f} l+I_{\text {piv }} w$
(3)
from eq. (2)

$$
\text { (2) } \quad \omega=\frac{8 m \ell\left(v_{c}+v_{f}\right)}{I_{i v}}
$$

$$
\left\{\begin{array}{l}
\text { substitute in } \\
\text { y (1) and }
\end{array}\right.
$$ solve for v_{f}.

(2)

$$
\begin{aligned}
V_{f}= & \frac{-l^{2} m^{2} v_{0}-\sqrt{I_{\text {ru }}^{2} m m v^{2}+I_{n} l^{2} m^{2} m v^{2}-I l^{2} m^{3} v^{2}}}{I_{\text {Piv }} m+l^{2} m^{2}} \\
& =(\mathbf{M}-\mathbf{3 m} \mathbf{m} \mathbf{v 0} /(\mathbf{M}+\mathbf{3 m})
\end{aligned}
$$

