Chemical Engineering 150A Midterm Exam
 Wednesday, February 22, 2017
 7:10 pm - 8:00 pm

The exam is 100 points total.

Name: \qquad (in Uppercase)

Student ID:

\qquad

You are allowed one $8.5^{\prime \prime} \times 11$ " sheet of paper with your notes on both sides and a calculator for this exam.

The exam should have 10 pages (front and back) including the cover page.

Instructions:

1) Please write your answers in the box if provided.
2) Do your calculations in the space provided for the corresponding part. Any work done outside of specified area (including scratch sheet) will not be graded.
3) Please sign below saying that you agree to the UC Berkeley honor code.
4) The exam contains two problems. Each problem has sub-parts to it.
5) Use the last page as scratch sheet if you would like to.

Honor Code:

As a member of the UC Berkeley community, I act with honesty and integrity.
Signature:

1.a	1.b	1.c	2.a	2.b	2.c	2.d	2.e	2.f	2.g	2.h	Total

Problem 1. (20 points)

Consider the showerhead depicted below. Fluid is pumped in through the main pipe, which is a cylindrical pipe with a radius of 10 cm , and exits the showerhead via 10 parallel cylindrical nozzles, each of which has a radius of 1.0 cm . The inlet flow velocity ($v_{i n}$) and outlet flow velocity (v_{o}) of each outlet nozzle can be considered to be plug flow, with an inlet flow velocity of $1.0 \mathrm{~cm} / \mathrm{s}$. The outlet flow velocity is the same across all the outlet nozzles.

a) Directly on the diagram below, use a dotted line to draw the control volume that will allow you to calculate the fluid exit velocity. Is this a microscopic or macroscopic analysis? (5 points)

b) Derive an equation for the outlet velocity (v_{o}) of an outlet nozzle in terms of inlet velocity ($v_{i n}$), the number of nozzles n, inlet and outlet radii $R_{i n}$ and $R_{\text {out }}$, and any other material parameters needed. Leave all quantities as variables and write your final answer in the box provided below. (10 points)

c) If the fluid density is $2.0 \mathrm{~g} / \mathrm{cm}^{3}$, please calculate both the outlet velocity and outlet mass flow rate. Write your answers in terms of cm / s and g / s respectively. (5 points)

Outlet velocity

Outlet mass flow rate

Problem 2. (80 points)

Suppose we have a fluid between two parallel flat plates separated by a distance 2δ and length L. A pressure of P_{1} is applied at the inlet on the left of the two plates and a lower pressure P_{2} is present at the outlet on the right.

Assume that the system is at steady state and that the velocity of the fluid has the following form:

$$
\underline{v}=v_{x}(y) \underline{e}_{x} .
$$

A schematic of this setup is given below along with a coordinate system.

$$
\begin{aligned}
& y=\delta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rl}
y=-\delta \\
x=0 & x=L
\end{array} \\
& P(x=0)=P_{1} \quad P(x=L)=P_{2}
\end{aligned}
$$

a. Is this flow incompressible or not? Prove it. (10 points)
b. Assume pressure is only a function of x and varies linearly along x. What is $P(x)$ as a function of the given variables L, P_{1} and P_{2} ? Write the answer in the box provided below. (5 points)

c. What is $\underline{\nabla P}$ in the vectorial form? (5 points)
d. The fluid flowing between the plates can be described by the following constitutive relationships between shear stress and velocity gradients, where μ is the coefficient of viscosity.

Please circle the components that are non-zero. (10 points)

$$
\begin{array}{lll}
\tau_{x x}=\mu \frac{\partial v_{x}}{\partial x} & \tau_{x y}=\frac{1}{2} \mu\left[\frac{\partial v_{y}}{\partial x}+\frac{\partial v_{x}}{\partial y}\right] & \tau_{x z}=\frac{1}{2} \mu\left[\frac{\partial v_{z}}{\partial x}+\frac{\partial v_{x}}{\partial z}\right] \\
\tau_{y x}=\frac{1}{2} \mu\left[\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right] & \tau_{y y}=\mu \frac{\partial v_{y}}{\partial y} & \tau_{y z}=\frac{1}{2} \mu\left[\frac{\partial v_{z}}{\partial y}+\frac{\partial v_{y}}{\partial z}\right] \\
\tau_{z x}=\frac{1}{2} \mu\left[\frac{\partial v_{x}}{\partial z}+\frac{\partial v_{z}}{\partial x}\right] & \tau_{z y}=\frac{1}{2} \mu\left[\frac{\partial v_{y}}{\partial z}+\frac{\partial v_{z}}{\partial y}\right] & \tau_{z z}=\mu \frac{\partial v_{z}}{\partial z}
\end{array}
$$

e. Give the Cauchy momentum balance only in the x-direction and simplify it combining results from previous parts. Write the final ordinary differential equation in the box. (20 points)
f. Give appropriate boundary conditions for the flow. Write the answers in the box. (5 points)

g. Solve the ordinary differential equation derived in part (e) for the velocity profile, $v_{x}(y)$. Write the answer in the box. (20 points)
\square
h. Sketch the flow profile in the figure provided. (5 points)

$$
y=\delta
$$

$$
y{\underset{x}{x}}_{\underset{x}{ }}
$$

$$
\begin{array}{cc}
y=-\delta \\
x=0 & x=L \\
P(x=0)=P_{1} & P(x=L)=P_{2}
\end{array}
$$

SCRATCH SHEET

SCRATCH SHEET

