Mathematics 54 - Midterm 2, 11/6/19

50 minutes, 50 points
Question 1. (15 points) Bubble in the correct answers, worth 1 point each. No justification necessary. Incorrect answers carry a 1-point penalty, so random choices are not helpful. You may leave any question blank for 0 points. You will not get a negative score on any group of five questions.

T An orthonormal collection of vectors in \mathbb{R}^{n} is linearly independent.
T All eigenvalues of a symmetric matrix are real.
T Every linear system has a Least Squares solution.
F A square matrix is invertible precisely when 0 is an eigenvalue of it.
T If the columns of the real 2×2 matrix $M \neq I_{2}$ are orthonormal, then the matrix transformation $\mathbf{x} \mapsto M \mathrm{x}$ is a rotation or a reflection in \mathbb{R}^{2}.
$\mathrm{T} \quad$ The $n \times n$ matrix representing the orthogonal projection onto a line in \mathbb{R}^{n} has rank one.
T The product of two orthogonal matrices of the same size is also an orthogonal matrix.
T The Least-Squares problem is finding a vector \mathbf{x} which makes $A \mathbf{x}$ as close as possible to a given vector \mathbf{b}.
$\mathrm{F} \quad$ If $(t-2)$ is a factor of the characteristic polynomial of A, then (-2) is an eigenvalue of A.
T The determinant of a square matrix is the product of its eigenvalues, included with their multiplicities.
$==================$

T If $\|\mathbf{u}-2 \mathbf{v}\|=\|\mathbf{u}+2 \mathbf{v}\|$, then the vectors \mathbf{u} and \mathbf{v} are orthogonal.
T If a vector \mathbf{v} is orthogonal to every column of the matrix A, then \mathbf{v}^{T} is in the left nullspace of A.
F Similar matrices have the same eigenvectors.
T If $A S=S$, then every nonzero column of S is an eigenvector of A.
T If $A^{T} A$ is the identity matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ preserves lengths: $\|\mathbf{x}\|=\|A \mathbf{x}\|$ for all \mathbf{x}.

T If a square matrix has orthonormal columns, then it also has orthonormal rows.
$\mathrm{F}^{*} \quad$ If W is a subspace of \mathbb{R}^{n} and \mathbf{p} is in W and \mathbf{q} in W^{\perp}, then $\|\mathbf{p}-\mathbf{q}\|=\|\mathbf{p}\|^{2}+\|\mathbf{q}\|^{2}$.
F Every upper triangular matrix A is diagonalizable.
T A real 2×2 matrix which has one non-real eigenvalue must be diagonalizable over \mathbb{C}.
T If the columns of the $m \times n$ matrix A are linearly independent, then the matrix $A^{T} A$ is invertible.

* In an unfortunate typo, the square is missing in Pythagoras. We must go with what is written and the statement is false.

Question 2. (11 points, $2+3+3+3$)
Determine, for the matrix

$$
A=\left[\begin{array}{cc}
0.7 & 0.15 \\
0.4 & 0.8
\end{array}\right]
$$

(a) the characteristic polynomial; (b) the eigenvalues; (c) an eigenbasis of \mathbb{R}^{2}; (d) a formula for A^{n}.
$\chi_{A}(t)=t^{2}-1.5 t+0.5$ so the eigenvalues are 1 and .5 .
An eigenvector for 1 is $[1,2]^{T}$ and for $.5[-3,4]^{T}$. They form an eigenbasis, and

$$
A=\frac{1}{10}\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
4 & 3 \\
-2 & 1
\end{array}\right]
$$

so that

$$
A^{n}=\frac{1}{10}\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2^{n}
\end{array}\right]\left[\begin{array}{cc}
4 & 3 \\
-2 & 1
\end{array}\right]=\frac{1}{10}\left[\begin{array}{cc}
4+6 / 2^{n} & 3\left(1-1 / 2^{n}\right) \\
8\left(1-1 / 2^{n}\right) & 6+4 / 2^{n}
\end{array}\right]
$$

Question 3. (12 points, $6+4+2$)
For the vector $\mathbf{x}=[1,2,2,3]^{T}$ and the subspace V of \mathbb{R}^{4} defined by the equations

$$
x_{1}-x_{2}+x_{3}-x_{4}=0 \quad \text { and } \quad 3 x_{1}+x_{2}-x_{3}-3 x_{4}=0
$$

(a) Find the 4×4 matrix implementing the orthogonal projection of \mathbb{R}^{4} onto V;
(b) Find the orthogonal projection of \mathbf{x} onto V.
(c) Find the distance from \mathbf{x} to V.

Project to V^{\perp} fir which webalready have the basis $[1,-1,1,-1]^{T},[3,1,-1,-3]^{T}$. Assembling them as columns of a matrix A, the formula for the projection matrix onto V^{\perp} reads

$$
A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{cc}
1 & 3 \\
-1 & 1 \\
1 & -1 \\
-1 & -3
\end{array}\right]\left[\begin{array}{cc}
4 & 4 \\
4 & 20
\end{array}\right]^{-1}\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
3 & 1 & -1 & -3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

So the projection onto V is given by subtracting this from I_{4} :

$$
P=\frac{1}{2}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] ; \quad P \mathbf{x}=\left[\begin{array}{c}
2 \\
2 \\
2 \\
2
\end{array}\right] ; \quad \mathbf{x}-P \mathbf{x}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

For a check, you can see that $\mathbf{x} \in V$ and $\mathbf{x}-P \mathbf{x}$ is orthogonal to V (because $x_{1}=x_{4}$ for all vectors in V). The distance from \mathbf{x} to V is the length of this last vector which is $\sqrt{2}$.

Question 4. (12 points)
Set up and solve a consistent system of linear equations for the coefficients c_{0}, c_{1} and c_{2}, whose solution gives the best fit to the relation $y=c_{0}+c_{1} x+c_{2}\left(x^{2}-x\right)$, in the sense of least squares, with the following data points:

x	-1	0	1	2
y	1	0	1	2

Plugging in the data for x, y gives the (inconsistent) system of equations

$$
c_{0}-c_{1}+2 c_{2}=1 ; c_{0}=0 ; c_{0}+c_{1}=; c_{0}+2 c_{1}+2 c_{2}=2
$$

Writing A for the coefficient matrix of the system, we have

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
2 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 2
\end{array}\right]=\left[\begin{array}{lll}
4 & 2 & 4 \\
2 & 6 & 2 \\
4 & 2 & 8
\end{array}\right]
$$

Writing \mathbf{b} for the vector of y-values, the normal equations in the unknown vector $\mathbf{c}=\left[c_{0}, c_{1}, c_{2}\right]^{T}, A^{T} A \mathbf{c}=$ $A^{T} \mathbf{b}$, become

$$
\left[\begin{array}{lll}
4 & 2 & 4 \\
2 & 6 & 2 \\
4 & 2 & 8
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right]
$$

giving $c_{0}=0.3, c_{1}=0.4, c_{2}=0.5$.

