Mathematics 54 Final Exam, 16 December 2019 180 minutes, 90 points

Question 1. (35 points) Select the correct answers, for 2.5 points each. No justification needed. Incorrect answers carry *no penalty* (but also no credit).

- 1. When can we be certain that a system $A\mathbf{x} = \mathbf{b}$, with a 5 × 4 matrix A, is consistent?
 - (a) Always (c) When $\mathbf{b} \perp \text{Nul}(A)$ (e) When A has four pivots

(f) When $\operatorname{Nul}(A) = \{\mathbf{0}\}\$

(d) When $\mathbf{b} \perp \text{LNul}(A)$

(b) When **b** is in Nul(A)

2. For which vector **b** below does the system $\begin{bmatrix} 2 & 4 \\ 4 & 6 \\ 3 & 4 \end{bmatrix}$ **x** = **b** have a solution?

(a) $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$ (b) $\begin{bmatrix} 3\\4\\3 \end{bmatrix}$ (c) $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ (d) $\begin{bmatrix} 2\\2\\1 \end{bmatrix}$ (e) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ (f) $\begin{bmatrix} 2\\2\\2 \end{bmatrix}$

3. For general matrix A, which of the following must remain unchanged under row operations?
(i) The row space
(ii) The column space
(iii) The positions of the pivot columns

- (a) (i) and (ii)(c) (i) and (iii)(e) (ii) but not (i) or (iii)(b) (ii) and (iii)(d) (i), (ii) and (iii)(f) All of them can change
- 4. Which of the following collections of vectors in \mathbb{R}^4 are linearly dependent?
 - (a) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_4$ (c) $\mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_2 \mathbf{e}_3, \mathbf{e}_3 \mathbf{e}_4$ (e) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ (b) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_1$ (d) $\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_2 - \mathbf{e}_3, \mathbf{e}_3 - \mathbf{e}_1$ (f) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_4, \mathbf{e}_4$
- 5. Which of the matrices below have rank 2?

[1	2	2	1]		Γ1	2	0			[1	2	3			3	2	1]
$A = \begin{vmatrix} 2 \end{vmatrix}$	3	3	2;	B =	2	4	1	;	C =	2	4	6	;	D =	4	5	4
4	7	7	4		0	1	0			4	7	10	,		1	2	3
_			_		_		_			_					_		_

(a) A, B and C but not D (c) A and C but not B, D (e) B, C and D but not A(b) B and C but not A, D (d) C and D but not A, B (f) They all have rank 2

6. For a general $m \times n$ matrix A, the dimensions of $\operatorname{Col}(A)$ and of $\operatorname{Row}(A)$ agree if and only if

- (a) A is symmetric(b) A is square(c) A is diagonalizable(d) A is invertible(e) They always agree!(f) A is orthogonal
- 7. If A and B are square matrices of the same size, we can safely conclude that
 - (a) AB = BA (c) $AB^T = B^T A$ (e) $(AB)^T = A^T B^T$ (b) $(A - B)(A + B) = A^2 - B^2$ (d) $(AB)^T = B^T A^T$ (f) None of the above.

8.	If linear transformation $T(\mathbf{e}_3 - \mathbf{e}_1) = \mathbf{e}_1 - \mathbf{e}_2$	ion $T : \mathbb{R}^3 \to$, then we can	\mathbb{R}^3 satisfies T be certain that	$(\mathbf{e}_1 - \mathbf{e}_2) = \mathbf{e}_2 - \mathbf{e}_2$ t	$-\mathbf{e}_3, T(\mathbf{e}_2 - \mathbf{e}_3)$	$= \mathbf{e}_3 - \mathbf{e}_1$ and
	(a) T is invertible			(d) $\mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$	is in the range of	of T
	(b) T is orthogonal			(e) T has rank 2	2 or more	
	(c) $T(\mathbf{e}_1) = \mathbf{e}_2$			(f) T does not e	exist	
9.	The following is an e	igenvalue of Δ	$\mathbf{A} = \begin{bmatrix} -1 & 2 & 3\\ 4 & 1 & 5\\ 0 & 0 & 7 \end{bmatrix}$].		
	(a) 1 (b) 2	2 (c) 3	(d) 4	(e) 5	(f) (-1)
10.	Let A be a 3×4 mat	trix. Which o	f the following	statements abou	t $A^T A$ cannot b	e true?
	(a) It is square	(c) It is invertib	le	(e) It is diagona	lizable over ${f R}$
	(b) It is symmetric	(d) It has rank 3	}	(f) Its eigenvalu	es are ≥ 0
11.	In which situation be	elow can we b	e sure that the	real $n \times n$ matr	ix A has positive	e determinant?
	(a) A has positive en	tries		(d) A is diagona	lizable	
	(b) There exists a ma	atrix B with	$AB = I_n$	(e) All eigenvalu	ues of A are position	tive real
	(c) A has positive pixel.	vots		(f) A is orthogo	nal	
12.	The least-squares sol	ution to $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$	$\mathbf{x} = \begin{bmatrix} 3\\ 6\\ 9 \end{bmatrix} $ is			
	(a) $x = 0$ (b) z	$\mathbf{x} = 1$ (c) $\mathbf{x} = 2$	(d) $x = 3$	(e) $x = 4$	(f) Not listed
13.	Pick the matrix below	w which is N	OT diagonalizal	ble:		
	(a) $\begin{bmatrix} 1 & 3\\ 4 & 1 \end{bmatrix}$ (b)	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $	c) $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$	$(d) \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$	(e) $\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$	(f) $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}$
14.	The exponential of the	he matrix $\begin{bmatrix} 0\\t \end{bmatrix}$	$\begin{bmatrix} -t \\ 0 \end{bmatrix}$ is			
	(a) $\begin{bmatrix} 0 & e^{-t} \\ e^t & 0 \end{bmatrix}$	(c) $\begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$	$\begin{bmatrix} t \end{bmatrix}$	(e) $\begin{bmatrix} \cos t & i \sin t \\ i \sin t & \cos t \end{bmatrix}$	$\begin{bmatrix} t \\ t \end{bmatrix}$
	$\begin{bmatrix} e & o \end{bmatrix}$			'] ;n +]	$\begin{bmatrix} i \sin t & \cos t \end{bmatrix}$	
	(b) $\begin{vmatrix} 0 & -e \\ e^t & 0 \end{vmatrix}$	(d) $\begin{vmatrix} \cos t & -i \\ \sin t & \cos t \end{vmatrix}$		(f) $\begin{vmatrix} e & 0 \\ 0 & e^{-it} \end{vmatrix}$	
			-	-		

Q1					
Q2					
Q3		\odot			
Q4					
Q5		\odot			
Q6				e	
Q7			\bigcirc		

Q8			e	
Q9		\odot		
Q10		\odot		
Q11			e	
Q12			e	
Q13		\odot		
Q14		\odot		

Question 2. (20 points) Find a solution to the 2^{nd} order differential equation

$$x''(t) + x(t) = 4|t| \cdot \sin(t), \qquad t \in \mathbb{R}$$

with initial conditions x(0) = x'(0) = 0.

Check that your solution is twice differentiable everywhere, including at t = 0.

Is it three times differentiable there? Why or why not?

Use this to write down all the (twice differentiable) solutions of the equation.

Hint: Consider the cases $t \ge 0$ and $t \le 0$ separately and use them to assemble a solution on \mathbb{R} .

Two fundamental homogeneous solutions are $\cos t$, $\sin t$ for the entire real line.

For $t \ge 0$, we can solve by undetermined coefficients to get a particular solution $t \sin t - t^2 \cos t$. For $t \le 0$, we solve to get $t^2 \cos t - t \sin t$.

These particular solutions vanish at 0, along with their first and second derivatives. Splicing them up we get the function defined by $t \sin t - t^2 \cos t$ for $t \ge 0$ and by $t^2 \cos t - t \sin t$ for $t \le 0$, which is is twice continuously differentiable at 0 and solves the equation.

All other solutions are obtained by adding linear combinations of $\sin t, \cos t$.

The third derivatives of the two half-line solutions also vanish at 0, so the function is in fact thrice differentiable. You can also see that from the equality $x''(t) = 4|t| \sin t - x(t)$: the right side is continuously differentiable.

Question 3. (10 points)

Find the solution with initial condition
$$\mathbf{x}(0) = \begin{bmatrix} 2\\ 2 \end{bmatrix}$$
 for the ODE $\frac{d\mathbf{x}}{dt}(t) = \begin{bmatrix} 4 & 1\\ -1 & 4 \end{bmatrix} \mathbf{x}(t)$

The eigenvalues of the matrix are $4 \pm i$, with respective eigenvectors $\begin{bmatrix} 1 \\ \pm i \end{bmatrix}$. So the general (complexvalued) solution is $c_+ \exp((4+i)t) \begin{bmatrix} 1 \\ i \end{bmatrix} + c_- \exp((4-i)t) \begin{bmatrix} 1 \\ -i \end{bmatrix}$, with $c_+, c_- \in \mathbb{C}$. To match the initial condition at t = 0, we need $c_+ + c_- = 2$ and $c_+ - c_- = -2i$. So $c_{\pm} = 1 \mp i$ and the solution we want is

$$e^{4t}\left((1-i)(\cos t + i\sin t)\begin{bmatrix}1\\i\end{bmatrix} + (1+i)(\cos t - i\sin t)\begin{bmatrix}1\\-i\end{bmatrix}\right) = 2e^{4t}\begin{bmatrix}\cos t + \sin t\\\cos t - \sin t\end{bmatrix}$$

Question 4. (15 points)

Find a particular solution for the following vector-valued ODE:

$$\mathbf{x}'(t) = \begin{bmatrix} -5 & 2\\ -6 & 2 \end{bmatrix} \cdot \mathbf{x}(t) + \frac{1}{e^{2t} + 1} \begin{bmatrix} 5\\ 8 \end{bmatrix}.$$

You may choose your method, but you must explain it briefly. Help with integrals: $\int \frac{dt}{t^2+1} = \arctan(t) + C$

We use the eigenvector method. Diagonalizing the 2 × 2 matrix we find the eigenvalues (-1) and (-2) with eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ respectively. Writing now $\mathbf{x}(t) = c_1(t)\mathbf{v}_1 + c_2(t)\mathbf{v}_2$, we note that $\begin{bmatrix} 5 \\ 8 \end{bmatrix} = \mathbf{v}_1 + 2\mathbf{v}_2$ and the vector equation decouples into the two scalar equations for the coefficients of \mathbf{v}_1 and \mathbf{v}_2 ,

$$c_1'(t) = -c_1(t) + \frac{1}{e^{2t} + 1}$$
$$c_2'(t) = -2c_2(t) + \frac{2}{e^{2t} + 1}$$

for which we find the particular solutions

$$c_1(t) = e^{-t} \int_0^t \frac{e^s ds}{e^{2s} + 1}$$
$$c_2(t) = e^{-2t} \int_0^t \frac{2e^{2s} ds}{e^{2s} + 1}$$

Both integrals can be done by substitution, the first with $u = e^s$ and the second with $v = e^{2s}$. The first gives $\arctan u - \pi/4$ and the second gives $\ln(v+1)$. We can omit the $-\pi/4$ if we don't insist that $c_1(0) = 0$, which is not required. So we can take for our answers

$$c_1(t) = e^{-t} \arctan(e^t)$$

 $c_2(t) = e^{-2t} \ln(e^{2t} + 1)$

and a particular solution is

$$c_1(t)\mathbf{v}_1 + c_2(t)\mathbf{v}_2 = \begin{bmatrix} e^{-t}\arctan(e^t) + 2e^{-2t}\ln(e^{2t}+1)\\ 2e^{-t}\arctan(e^t) + 3e^{-2t}\ln(e^{2t}+1) \end{bmatrix}$$

Question 5. (10 points)

Find all the numbers λ for which the differential equation $x''(t) = \lambda x(t)$ has non-zero solutions x(t) which satisfy $x(0) = x(\pi) = 0$. For each such λ , write down all such solutions.

Suggestion: Write the general solution of the equation for a fixed λ , and adjust the constants to make $x(0), x(\pi)$ vanish. You may assume that λ is real, if it helps your calculation.

If $\lambda = 0$, then the general solution is a linear function At + B; vanishing at 0 and π will force it to vanish everywhere, so that will not work.

Fixing $\lambda \neq 0$, a pair of fundamental solutions are $\exp(\pm \mu t)$ where $\pm \mu$ are the two square roots of λ (for example, $\pm \mu = \pm i$ if $\lambda = -1$). Consider now the general solution $c_+ e^{\mu t} + c_- e^{-\mu t}$. We need

$$c_{+} + c_{-} = 0$$

$$c_{+}e^{\mu\pi} + c_{-}e^{-\mu\pi} = 0.$$

The determinant of the system matrix is $e^{-\mu\pi} - e^{\mu\pi}$, and its vanishing is needed for the system to have a non-zero solution. So we need $e^{2\mu\pi} = 1$. If $\mu = a + ib$, then $e^{\mu\pi} = e^{2a\pi} (\cos(2b\pi) + i\sin(2b\pi))$, and this equals 1 if and only if b is an integer and a = 0. Solving the system, we get the solutions $\sin(bt)$, b a non-zero integer (which we may take to be positive), for $\lambda = -b^2$. (So there are no solutions for non-real λ .)

Bonus Question. (5 points)

You can only get credit for this if you solved Q5 correctly.

(a) For any two twice-differentiable functions f, g which vanish at 0 and at π , show that

$$\int_0^{\pi} f''(t)g(t)dt = \int_0^{\pi} f(t)g''(t)dt$$

(b) By using (a), or by direct computation, show that two solutions f, g as in Q5, but associated to two different values of λ are orthogonal in the sense that

$$\int_0^{\pi} f(t)g(t)dt = 0$$

(a) Integration by parts gives

$$\int_0^{\pi} f''(t)g(t)dt = f'(t)g(t)\big|_0^{\pi} - \int_0^{\pi} f'(t)g'(t)dt = f'(t)g(t)\big|_0^{\pi} - f(t)g'(t)\big|_0^{\pi} + \int_0^{\pi} f(t)g''(t)dt$$

and our conditions $f(0) = f(\pi) = g(0) = g(\pi) = 0$ make the difference between the integrals vanish. (b) If f, g are solutions of the ODEs $f'' = \lambda f$ and $g'' = \mu g$ then we have that $\mu, \lambda \neq 0$ and

$$\int_0^{\pi} f(t)g(t)dt = \frac{1}{\lambda} \int_0^{\pi} f''(t)g(t)dt = \frac{1}{\mu} \int_0^{\pi} f(t)g''(t)dt$$

and $\lambda \neq \mu$ forces the vanishing of the integral.

Of course, knowing that (up to scale) $f(t) = \sin(mt), g(t) = \sin(nt)$ with distinct positive integers m, n allows us to compute directly

$$2\int_0^{\pi} \sin(mt)\sin(nt)dt = \int_0^{\pi} (\cos(mt - nt) - \cos(mt + nt))dt = \left(\frac{\sin(mt - nt)}{m - n} - \frac{\sin(mt + nt)}{m + n}\right)\Big|_0^{\pi} = 0$$